GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-17
    Description: The collision between the Indian and Eurasian plates promotes the southeastward extrusion of the Indochina Peninsula while the internal dynamics of its crustal deformation remain enigmatic. Here, we make use of seismic data from 38 stations and employ the ambient noise tomography to construct a 3‐D crustal shear‐wave velocity (Vs) model beneath the Indochina Peninsula. A low‐Vs anomaly is revealed in the mid‐lower crust of the Shan‐Thai Block and probably corresponds to the southern extension of the crustal flow from SE Tibet. Although the Khorat Plateau behaves as a rigid block, the observed low‐Vs anomalies in the lower crust and also below the Moho indicate that the crust may have been partially modified by mantle‐derived melts. The strike‐slip shearing motions of the Red River Fault may have dominantly developed crustal deformation at its western flank where a low‐Vs anomaly is observed at the upper‐middle crust.
    Description: Plain Language Summary: The Indochina Peninsula was believed to behave as a rigid block where significant southeastward extrusion and clockwise rotation have occurred in response to the collision between the Indian and Eurasian plates. Here, we employ ambient noise data to obtain the shear‐wave velocity (Vs) images and find deformations in the interior of the crust beneath the Indochina Peninsula. A low‐Vs anomaly is observed in the mid‐lower crust of the Shan‐Thai Block and represents the crustal flow from SE Tibet. The crust of the Khorat Plateau, the core of the Indochina Block, has been partially modified by mantle‐derived melts. The strike‐slip shearing motions of the Red River Fault have brought crustal deformation at its southwestern flank characterized as a low‐Vs anomaly in the upper‐middle crust.
    Description: Key Points: A 3‐D crustal shear‐wave velocity (Vs) model was constructed for the Indochina Peninsula from ambient noise tomography. Low‐Vs in the middle‐lower crust of the Shan‐Thai Block may represent the southern extension of the crustal flow from SE Tibet. The crust of the rigid Khorat Plateau has been partially modified by intrusion of mantle‐derived melts.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: the State Key Laboratory of Marine Geology, Tongji University
    Description: Shanghai Sheshan National Geophysical Observatory
    Description: https://doi.org/10.5281/zenodo.5235658
    Keywords: ddc:551.1 ; Indochina Peninsula ; crustal structure ; lower‐crustal flow ; ambient noise tomography
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-05
    Description: The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps–Apennines–Carpathians–Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
    Description: Published
    Description: 1009–1033
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismology ; Alps ; Seismic network ; Geodynamics ; Seismic imaging ; Mountain building
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-25
    Description: A new seismic model for crust and upper mantle of the south Central Andes is derived from full waveform inversion, covering the Pampean flat subduction and adjacent Payenia steep subduction segments. Focused crustal low‐velocity anomalies indicate partial melts in the Payenia segment along the volcanic arc, whereas weaker low‐velocity anomalies covering a wide zone in the Pampean segment are interpreted as remnant partial melts. Thinning and tearing of the flat Nazca slab is inferred from gaps in the slab along the inland projection of the Juan Fernandez Ridge. A high‐velocity anomaly in the mantle below the flat slab is interpreted as relic Nazca slab segment, which indicates an earlier slab break‐off triggered by the buoyancy of the Juan Fernandez Ridge during the flattening process. In Payenia, large‐scale low‐velocity anomalies atop and below the re‐steepened Nazca slab are associated with the re‐opening of the mantle wedge and sub‐slab asthenospheric flow, respectively.
    Description: Plain Language Summary: Taking advantage of the abundant information recorded in seismic waveforms, we imaged the seismic structure of the crust and upper mantle beneath central Chile and western Argentina, where the oceanic Nazca slab is subducting beneath the South American plate. The subducted Nazca slab is almost flat at a depth of 100–150 km in the north of the study area below the Pampean region, where the Juan Fernandez seamount ridge is subducting as part of the Nazca slab. The slab steepens again in the south in the Payenia region. Our model reveals pronounced low‐velocity anomalies within the Pampean flat slab along the inland projection of the Juan Fernandez Ridge, indicating that the Pampean flat slab is thinned or even torn apart. A high‐velocity anomaly is imaged beneath the flat slab, representing a former slab segment that was broken off during the slab flattening process and was overridden by the advancing young slab. Our model suggests a causal relationship between the oceanic ridge subduction and the flat slab formation. In the Payenia region, the slab re‐steepening resulted in the re‐establishment of the mantle wedge and induced hot mantle flow below the slab, which are characterized by low‐velocity anomalies in the model.
    Description: Key Points: A new seismic model for the crust and upper mantle beneath central Chile and western Argentina is presented. Thinning and tearing within the Pampean flat slab is detected along the inland projection of the Juan Fernandez Ridge. A relic slab is imaged beneath the Pampean flat slab, reflecting slab break‐off during the flattening process.
    Description: Freie Universität Berlin—China Scholarship Council
    Description: European Research Council
    Description: European Cooperation in Science and Technology (COST) http://dx.doi.org/10.13039/501100000921
    Description: Swiss National Supercomputing Center (CSCS)
    Keywords: ddc:551.1 ; ddc:622.1592
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...