GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Natural Resource Modeling 28 (2015): 456-474, doi:10.1111/nrm.12075.
    Description: Marine reserves are an increasingly used and potentially contentious tool in fisheries management. Depending upon the way that individuals move, no-take marine reserves can be necessary for maximizing equilibrium rent in some simple mathematical models. The implementation of no-take marine reserves often generates a redistribution of fishing effort in space. This redistribution of effort, in turn, produces sharp spatial gradients in mortality rates for the targeted stock. Using a two-patch model, we show that the existence of such gradients is a sufficient condition for the evolution of an evolutionarily stable conditional dispersal strategy. Thus, the dispersal strategy of the fish depends upon the harvesting strategy of the manager and vice versa. We find that an evolutionarily stable optimal harvesting strategy (ESOHS)—one which maximizes equilibrium rent given that fish disperse in an evolutionarily stable manner– - never includes a no-take marine reserve. This strategy is economically unstable in the short run because a manager can generate more rent by disregarding the possibility of dispersal evolution. Simulations of a stochastic evolutionary process suggest that such a short-run, myopic strategy performs poorly compared to the ESOHS over the long run, however, as it generates rent that is lower on average and higher in variability.
    Description: This material is based upon work supported by funding from: The Woods Hole Oceanographic Institution's Investment in Science Fund to MGN; The Recruitment Program of Global Experts to YL; The University of Tennessee Center for Business and Economics Research to SL; and the U.S. National Science Foundation (NSF) through grants OCE-1031256, DEB-1257545, and DEB-1145017 to MGN, CNH-0707961 to GEH, DMS-1411476 to YL; and NSF Graduate Research Fellowships under Grant No. 1122374 to EAM and ES.
    Keywords: Evolution of dispersal ; Evolutionarily stable strategy ; Fisheries management ; Marine protected areas ; Optimal harvesting
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6, no. 11 (2015): 1-18, doi:10.1890/ES14-00503.1.
    Description: We develop a coupled economic-metacommunity model to investigate the trade-off between diversity and profit for multispecies systems. The model keeps track of the presence or absence of species in habitat patches. With this approach, it becomes (relatively) simple to include more species than can typically be included in models that track species population density. We use this patch-occupancy framework to understand how profit and biodiversity are impacted by (1) community assembly, (2) pricing structures that value species equally or unequally, and (3) the implementation of marine reserves. We find that when local communities assemble slowly as a result of facilitative colonization, there are lower profits and optimal harvest rates, but the trade-off with diversity may be either large or small. The trade-off is diminished if later colonizing species are more highly valued than early colonizers. When the cost of harvesting is low, maximizing profits tends to sharply reduce biodiversity and maximizing diversity entails a large harvesting opportunity cost. In the models we analyze, marine reserves are never economically optimal for a profit-maximizing owner. However, management using marine reserves may provide low-cost biodiversity protection if the community is over-harvested.
    Description: This research was supported by The Seaver Institute and the National Science Foundation (OCE-1031256) through grants awarded to J. B. Kellner and M. G. Neubert. E. A. Moberg was funded by NSF GRFP number 1122374 and MIT's Ida Green Fellowship.
    Keywords: Ecosystem-based management ; Fisheries management ; Marine reserves ; Metacommunity ; Multispecies interactions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...