GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Dangal, R S Shree; Yang, Jia; Pan, Shufen (2017): Global manure nitrogen production and application in cropland during 1860-2014: a 5 arcmin gridded global dataset for Earth system modeling. Earth System Science Data, 9(2), 667-678, https://doi.org/10.5194/essd-9-667-2017
    Publication Date: 2023-01-13
    Description: Given the important role of nitrogen input from livestock systems in terrestrial nutrient cycles and the atmospheric chemical composition, it is vital to have a robust estimation of the magnitude and spatiotemporal variation in manure nitrogen production and its application to cropland across the globe. In this study, we used the dataset from the Global Livestock Impact Mapping System (GLIMS) in conjunction with country-specific annual livestock populations to reconstruct the manure nitrogen production during 1860-2014. The estimated manure nitrogen production increased from 21.4 Tg N/yr in 1860 to 131.0 Tg N/yr in 2014 with a significant annual increasing trend (0.7 Tg N/ yr, p 〈 0.01). Changes in manure nitrogen production exhibited high spatial variability and concentrated in several hotspots (e.g., Western Europe, India, northeastern China, and southeastern Australia) across the globe over the study period. In the 1860s, the northern midlatitude region was the largest manure producer, accounting for ~52 % of the global total, while low-latitude regions became the largest share (~48 %) in the most recent 5 years (2010-2014). Among all the continents, Asia accounted for over one-fourth of the global manure production during 1860-2014. Cattle dominated the manure nitrogen production and contributed ~44 % of the total manure nitrogen production in 2014, followed by goats, sheep, swine, and chickens. The manure nitrogen application to cropland accounts for less than one-fifth of the total manure nitrogen production over the study period. The 5 arcmin gridded global dataset of manure nitrogen production generated from this study could be used as an input for global or regional land surface and ecosystem models to evaluate the impacts of manure nitrogen on key biogeochemical processes and water quality. To ensure food security and environmental sustainability, it is necessary to implement proper manure management practices on cropland across the globe.
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G02011, doi:10.1029/2010JG001393.
    Description: China's terrestrial ecosystems have been recognized as an atmospheric CO2 sink; however, it is uncertain whether this sink can alleviate global warming given the fluxes of CH4 and N2O. In this study, we used a process-based ecosystem model driven by multiple environmental factors to examine the net warming potential resulting from net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere during 1961–2005. In the past 45 years, China's terrestrial ecosystems were found to sequestrate CO2 at a rate of 179.3 Tg C yr−1 with a 95% confidence range of (62.0 Tg C yr−1, 264.9 Tg C yr−1) while emitting CH4 and N2O at rates of 8.3 Tg C yr−1 with a 95% confidence range of (3.3 Tg C yr−1, 12.4 Tg C yr−1) and 0.6 Tg N yr−1 with a 95% confidence range of (0.2 Tg N yr−1, 1.1 Tg N yr−1), respectively. When translated into global warming potential, it is highly possible that China's terrestrial ecosystems mitigated global climate warming at a rate of 96.9 Tg CO2eq yr−1 (1 Tg = 1012 g), substantially varying from a source of 766.8 Tg CO2eq yr−1 in 1997 to a sink of 705.2 Tg CO2eq yr−1 in 2002. The southeast and northeast of China slightly contributed to global climate warming; while the northwest, north, and southwest of China imposed cooling effects on the climate system. Paddy land, followed by natural wetland and dry cropland, was the largest contributor to national warming potential; forest, followed by woodland and grassland, played the most significant role in alleviating climate warming. Our simulated results indicate that CH4 and N2O emissions offset approximately 84.8% of terrestrial CO2 sink in China during 1961–2005. This study suggests that the relieving effects of China's terrestrial ecosystems on climate warming through sequestering CO2 might be gradually offset by increasing N2O emission, in combination with CH4 emission.
    Description: This study has been supported by NASA LCLUC Program (NNX08AL73G_S01) , NASA IDS Program (NNG04GM39C), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500).
    Keywords: Carbon dioxide ; China ; Global warming potential ; Methane ; Nitrous oxide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...