GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production.
    Type of Medium: Online Resource
    Pages: 1 online resource (151 pages)
    Edition: 1st ed.
    ISBN: 9781644900871
    Series Statement: Materials Research Foundations Series ; v.78
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Bone Char as a Support Material to Build a Microbial Biocapacitor -- 1. Introduction -- 2. Influence of the chemical and textural properties on biochar -- 3. Bioanode preparation -- 4. Accumulated charge -- 5. Biochar-based anode and bioanode capacitances -- Conclusions -- Acknowledgements -- List of abbreviations -- References -- 2 -- Nature Inspired Materials for Energy Storage -- 1. Introduction -- 2. Properties of nature-derived carbons properties for fulfilling the operational need for EDLC- supercapacitors -- 3. Various preparation mechanisms for nature derived carbons for supercapacitor -- 4. Advantages of naturally-derived carbons over graphene and CNT for EDLC supercapacitors -- 5. Use of different biological precursors -- 5.1 Plant-derived precursors -- 5.2 Fruit based precursors -- 5.3 Microbial-based precursors -- 5.4 Animal-based precursors -- 6. Structural characteristics and properties of nature derived carbons -- Conclusions and future directions -- References -- 3 -- Biomass Derived Composites for Energy Storage -- 1. Introduction -- 2. Sustainable biomass-carbon materials -- 3. Calculation paramaters -- 4. Biomass activation -- 4.1 Physical activation -- 4.2 Chemical activation -- 4.3 Hydrothermal carbonization -- 4.4 Other activations -- 5. Outlook -- Conclusions and prospects -- References -- 4 -- Lignin-Derived Materials for Energy Storage -- 1. Introduction -- 2. Lignin isolation process -- 3. Lignin carbon fibres -- 3.1 Activation techniques -- 3.2 Lignin- Lignin blends -- 3.3 Lignin-Cellulose blends -- 3.4 Fractionation -- 3.5 Reinforcement -- 3.6 Chemical modification -- 3.7 New lignin types -- 4. Lignin-derived porous carbon -- 5. Challenges with graphite-based electrodes -- 6. Lignin for electrochemical applications -- 6.1 Lithium-ion batteries. , 6.2 Electrochemical double layer capacitors -- 6.3 Electrochemical pseudocapacitors -- 6.4 Sodium -ion batteries -- 6.5 Lignin as binder -- Conclusion and Perspectives -- Acknowledgements -- This research work was financially supported by the University Malaya Impact-Oriented Interdisciplinary Research Grant (No.IIRG018A-2019) and Global Collaborative Programme - SATU Joint Research Scheme (No. ST012-2019). -- References -- 5 -- Bamboo Derived Materials for Energy Storage -- 1. Introduction -- 2. Fabrication of electrode material for supercapacitor application -- 3. Physical characterization -- 4. Electrochemical measurements -- Conclusion -- References -- 6 -- Cellulose-Derived Electrodes for Energy Storage -- 1. Introduction -- 2. Cellulose based flexible composite electrodes -- 3. Cellulose carbonization and activation -- 4. Cellulose-derived carbon for supercapacitors -- 5. Cellulose-derived carbon for high-frequency supercapacitors -- 6. Cellulose-derived carbon for lithium-ion batteries -- 7. Cellulose-derived carbon for lithium-sulfur batteries -- 8. Cellulose-derived carbon for other batteries -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book focuses on aerogels and their applications in such areas as energy storage, thermal storage, catalysis, water splitting and environmental remediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9781644900994
    Series Statement: Materials Research Foundations Series ; v.84
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Nanocellulose Aerogels -- 1. Introduction -- 2. Production processes of nanocellulose aerogels -- 3. Properties of nanocellulose aerogels -- 4. Applications of nanocellulose aerogels -- 4.1 Materials absorbents -- 4.2 Gas filters and membranes -- 4.3 Packaging materials -- 4.4 Energy storage systems and electrical devices -- 4.5 Thermal insulation and fire-retardant materials -- 4.6 Pharmaceutical and biomedical applications -- 5. Final considerations -- References -- 2 -- Porous Aerogels -- 1. Porous aerogel history -- 2. Aerogel pore classification -- 3. Inorganic-silica based aerogels -- 3.1 Properties of silica-based aerogel -- 3.1.1 Texture -- 3.1.2 Thermal properties -- 3.1.3 Optical properties -- 3.1.4 Entrapment, release, sorption, and storage properties -- 4. Inorganic-nonsilicate aerogels -- 4.1 ZrO2 aerogels -- 4.1.1 ZrO2 aerogels in catalysis -- 4.1.2 ZrO2 aerogels in ceramics -- 4.1.3 ZrO2 aerogels in solid oxide fuel cells -- 4.2 TiO2 aerogels -- 5. Organic-natural/biogels -- 5.1 Polysaccharides aerogels -- 5.2 Chitosan aerogel -- 5.3 Pectin aerogel -- 5.4 Alginate aerogel -- 5.5 κ -Carrageenan aerogel -- 5.6 Starch aerogel -- 5.7 Curdlan aerogel -- 5.8 Cellulose aerogels -- 5.8.1 Cellulose aerogel monoliths -- 5.8.2 Nanostructured cellulose filaments in textile -- 6. Resorcinol-formaldehyde aerogels -- 7. Composite aerogels -- 7.1 Polymer-crosslinked aerogels -- 7.2 Effect of polymer addition on aerogel fragility -- 8. Exotic aerogels -- 8.1 Chalcogenide aerogels -- 8.1.1 Chalcogenide aerogels formation by thiolysis: GeS2 -- 8.1.2 Chalcogenide aerogels formation by cluster-linking -- 8.1.3 Chalcogenide aerogels formation by nanoparticle assembly -- 9. Conducting polymer aerogel -- 9.1 Conducting polymer aerogels- A property prospective -- 9.1.1 PEDOT aerogels. , 9.1.2 Polypyrrole (Ppy) aerogels -- 9.1.3 Polyaniline (PANi) aerogels -- 10. Sonogels -- 11. Graphene aerogel -- 11.1 Preparation of reduced graphene oxide aerogels -- 12. Carbon nanotubes (CNTs) aerogel -- 13. Hybrid aerogel -- 13.1 Class-I hybrid composites -- 13.2 Class-II hybrid composite -- 14. Application of porous aerogel -- 14.1 Thermal insulation -- 14.2 Removal of pollutants -- 14.3 Elimination of solid particle from gases -- 14.4 CO2 capture -- 14.5 Volatile organic compounds/catalysis -- 14.6 Water treatment -- 14.6.1 Oils in water -- 14.6.2 Wastewater and brackish water treatment -- 14.7 Biomedical applications -- 14.7.1 Aerogels for the administration of medicines -- 14.7.2 Tissue engineering -- 14.7.3 Biosensing -- References -- 3 -- Hybrid Silica Aerogel -- 1. Introduction -- 2. Hybrid silica aerogel -- 2.1 Polymer-silica aerogel -- 2.2 Biomolecules-silica aerogel -- 2.3 Graphene-silica aerogel -- 3. Final remarks -- Acknowledgements -- References -- 4 -- Silica Aerogel -- 1. Introduction -- 2. Synthesis methodology -- 2.1 Bare silica aerogels -- 2.2 Modified silica aerogels -- 3. Physico-chemical properties and applications -- 3.1 Thermal insulating application -- 3.2 Optical property application -- 3.3 Electronic application -- 3.4 Acoustic insulation applications -- 3.5 Biomedical applications -- 3.6 Environmental applications -- 3.7 Others applications -- 3.7.1 Space and detector -- 3.7.2 Oil spill clean-up -- 3.7.3 Aerospace -- Conclusions and future prospects -- References -- 5 -- Carbon Aerogels -- 1. Introduction -- 2. Types of carbon aerogels -- 2.1 Low flexible-carbon aerogel -- 2.2 Super flexible-carbon aerogel -- 2.3 Carbon nano tube aerogels -- 2.4 Graphene nano aerogel -- 2.5 Nano-diamond aerogel -- 2.6 Ni-doped carbon aerogel -- 2.7 Pt, Pd, Ag and Ru-doped carbon aerogel -- 2.8 Ce, Zr-based carbon aerogel. , 3. General characteristics and properties -- 3.1 Bulk density and porosity -- 3.2 Backbone density -- 3.3 Backbone connectivity -- 3.4 Pore connectivity -- 3.5 Pore size -- 3.6 Thermal properties -- 3.7 Electrical properties -- 3.8 Electrochemical properties -- 3.9 Mechanical properties -- 3.10 Gas-transport properties -- 3.11 Optical properties -- 4. Applications -- 4.1 Electrochemical field -- 4.2 Hydrogen storage -- 4.3 Catalyst support -- 4.4 Thermal insulation -- 4.5 Adsorbent for waste water treatment -- 4.6 Photocatalyst for waste water treatment -- 4.7 Sensor application -- Conclusions -- References -- 6 -- Magnetic Aerogels -- 1. Introduction -- 2. Cellulose magnetic aerogels -- 3. Magnetic graphene aerogel -- 4. Carbon magnetic aerogel -- 5. Magnetic silica aerogels -- 6. Magnetic pectin aerogel -- Conclusions -- Acknowledgements -- References -- 7 -- Properties of Aerogels -- 1. Introduction -- 2. Structure -- 3. Thermal properties -- 3.1 Silica aerogels -- 3.2 Organic and polymeric aerogels -- 3.3 Carbon aerogels -- 4. Electrical properties -- 4.1 Aerogels with low conductivity -- 4.2 Low dielectric constant materials -- 4.3 Aerogels with high conductivity -- 5. Optical properties -- 5.1 Radiators in Cherenkov counters -- 5.2 Fiber optics -- 5.3 Non reflective materials -- 6. Mechanical properties -- 7. Acoustic properties -- 8. Biocompatibility -- Conclusion -- Acknowledgements -- References -- 8 -- Tailor-Made Aerogels -- 1. Introduction -- 2. Existing and potential applications of aerogels -- 2.1 Pore engineering -- 2.2 Customizable surface and coating -- 2.3 Hybrid aerogels (HAgs): Influence of the sol-gel process on final properties -- 3. Applications of Tailor-made aerogels -- Conclusions -- Acknowledgments -- References -- 9 -- Aerogels Envisioning Future Applications -- 1. Introduction -- 2. Future applications of bioaerogels. , 2.1 Bioaerogels applied as functional foods -- 2.2 Bioaerogels applied as thickeners and stabilizers -- 2.3 Bioaerogels applied as medicines and scaffolding in tissue repair -- 3. Future applications of polymeric aerogel -- 3.1 Polymeric aerogel as impact absorbing materials -- 3.2 Polymeric aerogels used as catalyst supports -- 3.3 Polymeric aerogels can be used as aerospace components -- 4. Future applications of carbon aerogel -- 4.1 Future applications of carbon aerogels as photocatalytic components, electrodes and supercapacitor -- 4.2 Materials against electromagnetic interference, lipid adsorbents and scaffolds for polymers -- 5. Future applications of inorganic aerogels -- 5.1 Inorganic aerogels used as fuel cells -- 5.2 Inorganic aerogels used as catalysts -- Conclusion -- Acknowledgements -- The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council of Scientific and Technological Development (CNPq) for funding this research. -- References -- 10 -- Recent Patents on Aerogels -- 1. Introduction -- 2. Applications -- 2.1 Patents on aerogel generators(WO 2004/022242 Al) -- 2.2 Aerogel blanket and its production (PCT/US2014/022919) -- 2.3 Cellulose aerogels PCT/GB2010/051542 -- 2.4 Some miscellaneous patents -- Acknowledgments -- References -- 11 -- State-of-the-Art and Prospective of Aerogels -- 1. Introduction -- 2.1 Synthesis of aerogels -- 3. State-of-the-art of aerogel -- 3.1 State-of-the-art properties of aerogel -- 3.2 State-of-the-art of preparation of aerogel -- 4. Future prospective of aerogel -- 4.1 Thermal insulation -- 4.2 Drug delivery -- 4.3 Energy storage device -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    Zurich :Trans Tech Publications, Limited,
    Keywords: Electronic books.
    Description / Table of Contents: Thermo-Mechanical Properties of Polymer CompositesSpecial topic volume with invited peer reviewed papers only.
    Type of Medium: Online Resource
    Pages: 1 online resource (241 pages)
    Edition: 1st ed.
    ISBN: 9783035732719
    Series Statement: Diffusion Foundations and Materials Application Series ; v.Volume 23
    Language: English
    Note: Intro -- Thermo-Mechanical Properties of Polymer Composites -- Preface -- Table of Contents -- Solvent Transport Phenomenon of Composite -- Natural Fiber Reinforced Synthetic Polymer Composites -- Ceramic Composites for Aerospace Applications -- Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite -- Graphene Composites -- Ionic Polymer Metal Composites -- Carbon Nanotube Composites -- Polymer Electrolyte Membranes -- Thermo Mechanical Properties of Carbon Nanotube Composites -- Ionic Transport in Sol-Gel Derived Organic-Inorganic Composites -- Membrane Transport for Gas Separation -- Mass Transport through Composite Asymmetric Membranes -- Transport Phenomenon of Nanoparticles in Animals and Humans -- Sorption and Diffusion Properties of Wood/Plastic Composites -- Graphite/UPE Nanocomposite: Transport, Thermal, Mechanical and Viscoelastic Properties -- Diffusion of Multiwall Carbon Nanotubes into Industrial Polymers -- Diffusion, Transport and Water Absorption Properties of Eco-Friendly Polymer Composites -- Keyword Index -- Author Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book reviews the fundamental concepts and recent advances in the areas of anodes, cathodes, electrolytes, separators, binders, fabrication of device assemblies and electrochemical performance.
    Type of Medium: Online Resource
    Pages: 1 online resource (211 pages)
    Edition: 1st ed.
    ISBN: 9781644900918
    Series Statement: Materials Research Foundations Series ; v.80
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Fabrication of TiO2 Materials for Lithium-ion Batteries -- 1. Introduction -- 2. Synthesis of TiO2 /graphene nanocomposites and metal oxides core-shells SnO2@TiO2 nanotube hybrids -- 2.1 Preparation of TiO2 NRDS -- 2.2 Synthesis of TiO2 NFBS -- 2.3 Synthesis of TiO2 nanocomposites with graphene -- 2.4 Synthesis of coaxial SnO2@TiO2 nanotube hybrids -- 3. Fabrication of cell for electrochemical characterization -- 3.1 Electrochemical measurements for TiO2/graphene nanocomposite -- 3.2 Electrochemical tests for coaxial SnO2@TiO2 nanotube hybrids -- 4. Characterization of TiO2/graphene nanocomposites -- 4.1 TiO2 /graphene nanocomposites -- 4.1.1 SEM -- 4.1.2 TEM -- 4.1.3 XRD -- 4.1.4 Raman -- 4.1.5 BET -- 4.1.6 EDX -- 4.2 Electrochemical Testing -- 5. Characterization of coaxial SnO2@TiO2 nanotube hybrids -- 5.1 Coaxial SnO2@TiO2 nanotube hybrids -- 5.1.1 SEM & -- TEM -- 5.1.2 XRD -- 5.1.4 Electrochemical testing -- Conclusion -- Acknowledgement -- References -- 2 -- A Brief History of Conducting Polymers Applied in Lithium-ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Before 2000: Emergence stage -- 2.2 2000-2006: Preliminary stage -- 2.3 Since 2007: Fast development stage -- 3. Applications on anode materials -- 3.1 Before 2010: Emergence stage -- 3.2 Since 2010: Rising stage -- Conclusions & -- Outlooks -- Acknowledgment -- References -- 3 -- 2D Transition Metal Dichalcogenides for Lithium-ion Batteries -- 1. Introduction -- 2. MoS2-based anode materials for LIBs -- 3. WS2-based anode materials for LIBs -- 4. MoSe2 based anode materials for LIBs -- 5. WSe2-based anode materials for LIBs -- 6. Other TMDs for LIBs -- 7. Summary and future outlooks -- Acknowledgement -- References -- 4 -- Metal Sulphides for Lithium-ion Batteries. , 1. Introduction -- 2. Demands on batteries in 21st Century -- 3. Design of a lithium-ion battery (LIB) -- 4. Materials related issues in LIBs in modern era -- 5. Advantages of metal-sulphides for LIBs -- 6. Metal sulphide based nanocomposites for battery applications -- 7. Different types of metal sulphides as anode materials in the LIBs applications -- 7.1 Layered metal-sulphides for LIBs. -- 7.2 Copper sulphides -- 7.3 Cobalt sulphides -- 7.4 Molybdenum disulphide (MoS2) -- 7.5 Tungsten disulphide (WS2) -- 7.6 Iron disulphide (FeS2) -- 7.7 Tin sulphides -- 7.8 Nickel Sulphides -- 8. Synthesis techniques for metal sulphides -- 8.1 Solid state method -- 8.2 The hydro/solvothermal method -- 8.3 Microwave-assisted hydrothermal synthesis -- 8.4 Spraying-related methods -- 9. Summary -- References -- 5 -- Magnetic Nanomaterials for Lithium-ion Batteries -- 1. Introduction -- 2. History of LIBs -- 3. LIB Technology -- 4. LIB working principle -- 5. Nanomaterials -- 6. Nanomaterials in anode for LIBs -- 7. Nanomaterials in cathode for LIBs -- Conclusions -- References -- 6 -- Recent Advances in Nanomaterials for Li-ion Batteries -- 1. Introduction -- 2. Structure and working of Li-ion battery -- 3. Electrochemical behavior of various materials for Li-ion batteries -- Conclusions -- References -- 7 -- Silicon Materials for Lithium-ion Battery Applications -- 1. Introduction -- 1.1 Overview on lithium battery technology -- 1.2 Silicon as anode for lithium batteries: -- 1.2.1 0D nanostructures -- 1.2.2 1D nanostructures -- 1.2.3 2D nanostructures -- 1.2.4 3D-nanostructures -- 2. Electrochemical performance of silicon based nanostructures -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9781644900833
    Series Statement: Materials Research Foundations Series ; v.76
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- NASICON Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Machinery of SIBs -- 2.1 Storing the progression of NASICON materials -- 2.2 Cathode materials based on NASICON type -- 2.2.1 NASICON-type nanoparticles of Fe2(MoO4)3 wrapped with graphene -- 2.2.2 NASICON-type materials based on Na3V2(PO4)3 -- 2.2.3 NASICON-type materials based on Na3V2(PO4)2F3 and Na3V2(PO4)3 -- 2.2.4 NASICON-type materials of porous Na3V2(PO4)3 and NaTi2(PO4)3 -- 2.2.5 A negative electrode of Mg0.5Ti2(PO4)3 based NASICON materials -- 2.2.6 Numerous other NASICON cathode materials -- 2.3 Anode materials based on NASICON-type -- 2.3.1 NaTi2(PO4)3 (NTP) type anode materials -- 2.3.2 NaZr2(PO4)3 (NZP) type anode materials -- 2.3.3 Numerous other NASICON anode materials -- 2.4 Commercial prospects of NIB technologies -- Conclusions -- Acknowledgment -- References -- 2 -- Carbon Anodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Overview of SIBs electrode materials -- 3. Carbon anode materials for advanced SIBs -- 3.1 Graphite as anode for SIBs -- 3.2 Hard carbon as anode for SIBs -- 3.3 Graphene as anode for SIBs -- 3.4 Carbon nanofibers as anode for SIBs -- 3.5 Biomass-derived carbon as anode for SIBs -- 3.6 Heteroatom-doped carbon materials as anode for SIBs -- References -- 3 -- Organic Electrode Material for Sodium-Ion Batteries -- 1. Introduction -- 2. Molecular design of electrodes for organic sodium ion batteries -- 2.1 Organic electrodes constituting of C=O based reaction -- 2.1.1 Carbonyl compounds -- 2.1.2 Polyimides -- 2.1.3 Quinones -- 2.1.4 Carboxylates -- 2.1.5 Anhydrides -- 2.2 Organic electrodes based on doping reaction -- 2.2.1 Organic radical polymers -- 2.2.2 Conductive polymers -- 2.2.3 Conjugated microporous polymers -- 2.2.4 Organometallic polymers. , 2.3 Organic electrode constituting of C=N based reaction -- 2.3.1 Schiff bases -- 2.3.2 Pteridine derivatives -- 3. Electrode design for sodium-ion batteries -- 3.1 Molecular engineering -- 3.2 Polymerization -- 3.3 Combining with carbon (carbon hybrid) -- 3.4 Electrolyte modification -- 4 Future challenges -- References -- 4 -- Alloys for Sodium-Ion Batteries -- 1. Introduction -- 2. Sodium ion batteries anode materials -- 3. Hard carbon -- 4. Carbon nanostructures -- 5. Carbon and alloy-based material composites -- 6. Alloying reactions-based anode materials -- 6.1 P-based materials -- 6.1.1 Red phosphorous -- 6.1.2 Black phosphorous -- 7. Conversion based material -- 7.1 Metal oxides -- 7.2 Metal sulfides -- 8. Graphene -- Conclusion and challenges -- Acknowledgments -- References -- 5 -- Mn-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. History -- 3. Types -- 4. Sodium-ion batteries -- 5. Mn-based sodium-ion batteries -- References -- 6 -- Tin-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Sn-based anodes -- 3. Electrochemical performance -- 4. Structure and design -- 5. Performance -- 6. Thermal stability -- 7. Mechanism -- 8. Drawbacks -- 9. Factors affecting the capacity of Sn based sodium ion batteries -- Conclusion -- References -- 7 -- Conducting Polymer Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Energy depository technologies in static application -- 2.1 Pump hydroelectric depository (PHD) -- 2.2 Compressed air energy depository (CAED) -- 2.3 Electrochemical energy storage (EED) -- 3. Lithium-ion batteries (LIBs) -- 4. Beginning of new technology in the field of energy storage -- 4.1 Electrode material for SIBs -- 5. Polymer electrode material for the SIBs -- 5.1 Polyimides -- 6. Conducting polymers. , 6.1 Conducting polymer can provide electromagnetic shielding of electronic devices -- 6.2 It absorbs microwaves by using stealth technology -- 6.3 It can be used as a hole injecting electrode for OLEDs -- 6.4 Some conducting polymers are promising for field effect transistor (FET) -- 6.5 It can be used in display technology due to their electroluminescent property -- 7. Types of conductive polymer -- 7.1 Electrically conducting polymer -- 7.2 Doping in conductive polymer -- 7.3 Polyacetylene and polyphenylene as electrode material for the SIBs -- 7.4 Conjugated conductive polymer and charge storage mechanism -- 7.5 Non-conjugated conductive radical polymer -- 7.6 Inorganic nanoparticles-conducting polymer composite based battery electrodes -- 8. Why conducting polymer? -- 9. Functions of CPs -- 9.1 Merits and demerits of the conducting polymer -- Conclusion -- Acknowledgement -- References -- 8 -- Recent Progress in Electrode Materials for Sodium Ion Batteries -- 1. Introduction -- 2. History and working principal of SIB -- 3. Anode Materials for SIB -- 3.1 Metal Oxide Anode Materials -- 3.2 Alloy Anode Materials -- 4. Cathode Materials for SIBs -- 4.1 Layered Oxide Cathode Materials -- 4.2 Polyanionic Cathode Materials -- Conclusion -- References -- 9 -- Electrolytes for Na-O2 Batteries: Towards a Rational Design -- 1. Introduction -- 2. Na-O2 Batteries -- 3. Instability of electrolyte -- 4. The use of additives -- 5. Outlook -- Acknowledgements -- References -- 10 -- State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology -- 1. Introduction -- 2. Background -- 3. State-of-the-art or current status of SIBs -- 4. Hurdles in SIBs -- 5. Next-generation battery research -- 5.1 SexSy-based negative electrode materials (NEMs) -- 5.2 Na3M2(PO4)2F3 [M¼Ti, Fe, V] based NEMs. , 5.3 Inclusion of fluorinated ethylene carbonate (FEC) in the electrolyte -- 5.4 Efficient cycling process by Sb in SIBs -- 5.5 SnSb as NEMs -- 6. Economic perspective of SIBs -- 6.1 Battery Performance and Cost model (BatPaC model) -- 6.2 Cost of cathode -- 6.3 Cost of anode -- 6.4 Cost of electrolyte -- 6.5 Fluctuations or variation in price -- 6.6 Limitation of BatPaC model -- 7. A materialistic outlook of SIBs -- 8. Challenges of SIBs -- 8.1 Limitations and materialistic barriers -- 8.2 Challenges of NEMs -- 9. Future opportunities -- Acknowledgment -- References -- 11 -- Conducting Polymers for Sodium-Ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Doped and pure conducting polymer cathodes -- 2.2 Conducting polymer-based composite cathode -- 3. Applications on anode materials -- 3.1 Doped and pure conducting polymer anodes -- 3.2 Conducting polymer-based composite anode -- Conclusions & -- Outlooks -- Acknowledgment -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Adhesives-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9781119655084
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling -- 1.1 Bacterial Surface Fouling (Biofouling) -- 1.2 Negative Effects of Biofouling by Bacteria on Practical Applications -- 1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling -- 1.3.1 Hydrophilic Polymers -- 1.3.2 Zwitterionic Polymers -- 1.3.3 Super-Hydrophobic Polymers -- 1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) -- 1.3.5 Protein and Glycoprotein-Based Coatings -- 1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Lignin-Based Adhesives -- 2.1 Introduction -- 2.2 Native Lignin and Source of Technical Lignin -- 2.2.1 Native Lignin -- 2.2.2 Technical Lignins -- 2.3 Limitations of Technical Lignins -- 2.3.1 Heterogeneity of Technical Lignins -- 2.3.2 Reactivity of Technical Lignins -- 2.4 Lignin Pre-Treatment/Modification for Adhesive Application -- 2.4.1 Physical Pre-Treatment -- 2.4.2 Chemical Modification -- 2.5 Challenges and Prospects -- 2.6 Conclusions -- References -- Chapter 3 Green Adhesive for Industrial Applications -- 3.1 Introduction -- 3.2 Advanced Green Adhesives Categories- Industrial Applications -- 3.2.1 Keta Spire Poly Etherether Ketone Powder Coating -- 3.2.2 Bio-Inspired Adhesive in Robotics Field Application -- 3.2.3 Bio-Inspired Synthetic Adhesive in Space Application -- 3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application -- 3.2.4 Natural Polymer Adhesive for Wood Panel Industry -- 3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry -- 3.2.6 Conductive Adhesives in Microelectronics Industry -- 3.2.7 Bio-Resin Adhesive in Dental Industry -- 3.2.8 Green Adhesive in Fiberboard Industry -- 3.3 Conclusions and Future Scope. , References -- Chapter 4 Green Adhesives for Biomedical Applications -- 4.1 Introduction -- 4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties -- 4.2.1 Chitosan -- 4.2.2 Alginate -- 4.2.3 Lignin -- 4.2.4 Lactic Acid PLA -- 4.3 Properties Characterization of Green Adhesives for Biomedical Applications -- 4.3.1 Diffraction X-Rays (DRX) -- 4.3.2 Atomic Force Microscopy (AFM) -- 4.3.3 Scanning Electron Microscope (SEM Images) -- 4.3.4 Wettability or Contact Angle (CA) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) -- 4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) -- 4.3.8 Surface Area and Porosimetry Analyzer (ASAP) -- 4.3.9 Mechanical Properties of Green Adhesives -- 4.4 Biomedical Applications of Natural Polymers -- 4.4.1 Alginate -- 4.4.1.1 Biomedical Applications of Alginate -- 4.4.2 Chitosan -- 4.4.2.1 Biomedical Applications of Chitosan -- 4.4.3 Lignin -- 4.4.3.1 Biomedical Applications of Lignin -- 4.4.4 Polylactide (PLA) -- 4.4.4.1 Biomedical Applications of PLA -- 4.5 Final Considerations -- Acknowledgements -- References -- Chapter 5 Waterborne Adhesives -- 5.1 Introduction -- 5.1.1 Motivation for the Use of Waterborne Adhesives -- 5.1.1.1 Sustainability and Environment Regulations -- 5.1.1.2 Circular Economy -- 5.1.1.3 Avoid Harmful Emissions -- 5.1.1.4 Development of Novel and Sustainable End Products -- 5.1.2 Environmental Effects and Mankind Toxicity Analysis -- 5.2 Performance of Waterborne Adhesives: An Overview -- 5.2.1 Waterborne Polyurethane (WBPU) Adhesives -- 5.2.1.1 Chemical Structure of Waterborne PU -- 5.2.1.2 Performances of WBPU Adhesives -- 5.2.2 Waterborne Epoxy Adhesive -- 5.3 Conclusions -- References -- Chapter 6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant -- 6.1 Introduction. , 6.2 Furfuryl Alcohol as Adhesives -- 6.3 Polyfurfuryl Alcohol as Sealants -- 6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants -- 6.4 Applications -- 6.5 Conclusions -- Acknowledgement -- References -- Chapter 7 Bioadhesives -- 7.1 Introduction -- 7.2 History of Bioadhesives -- 7.3 Classification of Bioadhesives -- 7.4 Mechanism of Bioadhesion -- 7.4.1 Mechanical Interlocking -- 7.4.2 Chain Entanglement -- 7.4.3 Intermolecular Bonding -- 7.4.4 Electrostatic Bonding -- 7.5 Testing of Bioadhesives -- 7.5.1 In Vitro Methods -- 7.5.1.1 Shear Stress Measurements -- 7.5.1.2 Peel Strength Evaluation -- 7.5.1.3 Flow Through Experiment and Plate Method -- 7.5.2 Ex Vitro Methods -- 7.5.2.1 Adhesion Weight Method -- 7.5.2.2 Fluorescent Probe Methods -- 7.5.2.3 Falling Liquid Film Method -- 7.6 Application of Bioadhesives -- 7.6.1 Bioadhesives as Drug Delivery Systems -- 7.6.2 Bioadhesives as Fibrin Sealants -- 7.6.3 Bioadhesives as Protein-Based Adhesives -- 7.6.4 Bioadhesives in Tissue Engineering -- 7.7 Conclusion -- References -- Chapter 8 Polysaccharide-Based Adhesives -- 8.1 Introduction -- 8.2 Cellulose-Derived Adhesive -- 8.2.1 Esterification -- 8.2.1.1 Cellulose Nitrate -- 8.2.1.2 Cellulose Acetate -- 8.2.1.3 Cellulose Acetate Butyrate -- 8.2.2 Etherification -- 8.2.2.1 Methyl Cellulose -- 8.2.2.2 Ethyl Cellulose -- 8.2.2.3 Carboxymethyl Cellulose -- 8.3 Starch-Derived Adhesives -- 8.3.1 Alkali Treatment -- 8.3.2 Acid Treatment -- 8.3.3 Heating -- 8.3.4 Oxidation -- 8.4 Natural Gums Derived-Adhesives -- 8.5 Fermentation-Based Adhesives -- 8.6 Enzyme Cross-Linked-Based Adhesives -- 8.7 Micro-Biopolysaccharide-Based Adhesives -- 8.8 Mechanism of Adhesion -- 8.9 Tests for Adhesion Strength -- 8.10 Applications -- 8.10.1 Biomedical Applications -- 8.10.2 Food Stuffs Applications -- 8.10.3 Pharmaceutical Applications. , 8.10.4 Agricultural Applications -- 8.10.5 Cigarette Manufacturing -- 8.10.6 Skin Cleansing Applications -- 8.11 Conclusion -- References -- Chapter 9 Wound Healing Adhesives -- 9.1 Introduction -- 9.2 Wound -- 9.2.1 Types of Wounds -- 9.2.1.1 Acute Wounds -- 9.2.1.2 Chronic Wounds -- 9.3 Structure and Function of the Skin -- 9.4 Mechanism of Wound Healing -- 9.5 Wound Closing Techniques -- 9.6 Wound Healing Adhesives -- 9.7 Types of Wound Healing Adhesives Based Upon Site of Application -- 9.7.1 External Use Wound Adhesives -- 9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin [30] -- 9.7.2 Internal Use Wound Adhesives -- 9.8 Types of Wound Healing Adhesives Based Upon Chemistry -- 9.8.1 Natural Wound Healing Adhesives -- 9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives -- 9.8.1.2 Albumin-Based Adhesives -- 9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives -- 9.8.1.4 Starch -- 9.8.1.5 Chitosan -- 9.8.1.6 Dextran -- 9.8.2 Synthetic Wound Healing Adhesives -- 9.8.2.1 Cyanoacrylate -- 9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) -- 9.8.2.3 Hydrogels -- 9.8.2.4 Polyurethane -- 9.9 Summary -- References -- Chapter 10 Green-Wood Flooring Adhesives -- 10.1 Introduction -- 10.2 Wood Flooring -- 10.2.1 Softwood Flooring -- 10.2.2 Hardwood Flooring -- 10.2.3 Engineered Wood Flooring -- 10.2.4 Laminate Flooring -- 10.2.5 Vinyl Flooring -- 10.2.6 Agricultural Residue Wood Flooring Panels -- 10.3 Recent Advances About Green Wood-Flooring Adhesives -- 10.3.1 Xylan -- 10.3.2 Modified Cassava Starch Bioadhesives -- 10.3.3 High-Efficiency Bioadhesive -- 10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide -- 10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive -- 10.3.6 "Green" Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins. , 10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing -- 10.3.8 Cottonseed Protein as Wood Adhesives -- 10.3.9 Chitosan as an Adhesive -- 10.3.10 PE-cg-MAH Green Wood Flooring Adhesive -- References -- Chapter 11 Synthetic Binders for Polymer Division -- List of Abbreviations -- 11.1 Introduction -- 11.2 Classification of Adhesives Based on Its Chemical Properties -- 11.2.1 Thermoset Adhesives -- 11.2.2 Thermoplastic Adhesives -- 11.2.3 Adhesive Blends -- 11.3 Adhesives Characteristics -- 11.4 Adhesives Classification Based on Its Function -- 11.4.1 Permanent Adhesives -- 11.4.2 Removable Adhesives -- 11.4.3 Repositionable Adhesives -- 11.4.4 Blended Adhesives -- 11.4.5 Anaerobic Adhesives -- 11.4.6 Aromatic Polymer Adhesives -- 11.4.7 Asphalt -- 11.4.8 Adhesives Based on Butyl Rubber -- 11.4.9 Cellulose Ester Adhesives -- 11.4.10 Adhesives Based on Cellulose Ether -- 11.4.11 Conductive Adhesives -- 11.4.12 Electrically Conductive Adhesive Materials -- 11.4.13 Thermally Conductive Adhesives -- 11.5 Resin -- 11.5.1 Unsaturated Polyester Resin -- 11.5.2 Monomers -- 11.5.2.1 Unsaturated Polyester -- 11.5.2.2 Alcohol Constituents -- 11.5.2.3 Constituents Like Anhydride and Acid -- 11.5.3 Vinyl Monomers of Unsaturated Polyester Resins -- 11.5.4 Styrenes -- 11.5.5 Acrylates and Methacrylates -- 11.5.6 Vinyl Ethers -- 11.5.7 Fillers -- 11.6 Polyurethanes -- 11.6.1 Monomers -- 11.6.1.1 Diisocyanates -- 11.6.1.2 Phosgene Route -- 11.6.1.3 Phosgene-Free Route -- 11.6.1.4 Polyols -- 11.6.1.5 Vinyl Functionalized Polyols -- 11.6.1.6 Polyols Based on Modified Polyurea -- 11.6.1.7 Polyols Based on Polyester -- 11.6.1.8 Acid and Alcohols-Based Polyesters -- 11.6.2 Rectorite Nanocomposites -- 11.6.3 Zeolite -- 11.7 Epoxy Resins -- 11.7.1 Monomers -- 11.7.1.1 Epoxides -- 11.7.1.2 Hyper Branched Polymers. , 11.7.2 Epoxide Resins Based on Liquid Crystalline Structure.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents the current status of superconductor science and technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (266 pages)
    Edition: 1st ed.
    ISBN: 9781644902110
    Series Statement: Materials Research Foundations Series ; v.132
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Basic Concepts and Properties of Superconductors -- 1. Introduction and background -- 2. History of superconductors -- 3. Superconductors vs perfect conductors -- 4. Phenomenon of superconductivity -- 4.1 Zero resistance -- 4.2 Super-electron -- 4.3 Critical temperature for superconductors -- 5. Classification of superconductors -- 6. Properties of superconductor -- 6.1 Evanesce of electrical resistance -- 6.2 Flux lines and diamagnetism -- 6.3 Flux quantization in superconductors -- 6.4 Quantum interference -- 6.5 Josephson current -- Conclusion -- References -- 2 -- Properties and Types of Superconductors -- 1. Introduction -- 1.1 The Meissner effect and superconductors -- 2. History of superconductors -- 3. Types of superconductors -- 3.1 Type I superconductors -- 3.1.1 Examples -- 3.2 Type II superconductors -- 3.2.1 Examples -- 4. Comparisons between type I and type II superconductors -- 4.1 Meissner effect -- 4.2 Conduction of electrons -- 4.3 Surface energy -- 5. Superconducting materials -- 5.1 Metal based system superconductors -- 5.2 Copper oxides (Cuprates) -- 5.3 Iron based superconductors -- 6. Properties of superconductors -- Conclusion -- References -- 3 -- Fundamentals and Properties of Superconductors -- 1. Introduction -- 2. Types of superconductors -- 2.1 Type I and II superconductors -- 2.2 Organic superconductors -- 2.3 Magnetic superconductors -- 2.4 High temperature superconductors (HTS) -- 3. Properties of superconductors -- 3.1 Zero electric resistance -- 3.2 Meissner effect -- 3.3 Transition temperature -- 3.4 Critical current -- 3.5 Persistent currents -- 3.6 Idealized diamagnetisms, flux lines, with its quantization -- 3.7 Flux quantization -- 3.8 Josephson current -- 3.9 Josephson current in a magnetic field. , 3.10 Superconducting quantum interference device (SQUID) -- 3.11 Superconductivity: A macroscopic quantum phenomenon -- 3.12 Critical magnetic field -- Conclusion -- References -- 4 -- Superconductors for Large-Scale Applications -- 1. Introduction -- 2. Meissner effect: Attribute to superconductors -- 3. Advanced power transmission system -- 4. Super conducting electrical power devices -- 5. Advanced power storage system -- 6. Modern transportation -- 7. Advanced accelerators -- 8. Magnetic resonance devices -- 8.1 Magnetic resonance imaging for medical diagnostics -- 8.2 NMR spectroscopy -- 8.3 Fast field cycle relaxometer -- 9. SQUID -- Conclusion -- References -- 5 -- Lanthanide-based Superconductor and its Applications -- 1. Introduction -- 2. Lanthanide-based superconductors -- 2.1 Preparation methods -- 2.1.1 Solid state reaction processes -- 2.1.2 Laser heating -- 2.1.3 High-pressure synthesis -- 2.2 Characterization of lanthanide-based superconductors -- 2.3 Superconducting properties of the LBSC -- 2.4 Applications of LBSC -- Conclusions -- References -- 6 -- Type I Superconductors: Materials and Applications -- 1. Introduction -- 2. Type-I superconductors -- 3. History of superconductivity -- 3.1. Quest for low temperature -- 3.2 Discovery of Helium -- 3.3 Curiosity to know the resistance of metals at absolute zero? -- 3.4 Why mercury used to measure low-temperature resistance? -- 4. Attributes of superconductors -- 4.1 Current in a superconductor coil -- 4.2 How superconductors behave in an external magnetic field? -- 4.3 Unification of electric and magnetic behaviour -- 5. Characteristics of type-I superconductors -- 5.1 Critical Temperature (TC) -- 5.2 Meissner effect or perfect diamagnetism -- 5.3 Critical magnetic field (HC) -- 5.4 Critical current (IC) -- 5.5 Isotope effect -- 5.6 Development of theories of superconductivity. , 5.6.1 London equations and penetration depth -- 5.6.2 Ginzburg and Landau theory -- 5.6.3 BCS theory -- 5.7 Breakthroughs and outcomes of theoretical research -- 6. Applications -- 7. Issues with type-I superconductors -- References -- 7 -- Bulk Superconductors: Materials and Applications -- 1. Introduction -- 2. New era of high temperature superconductor -- 3. Type-II superconductors -- 4. Characteristics of type-II superconductors -- 4.1 Critical temperature (TC) -- 4.2 Critical magnetic field (HC) -- 4.3 Meissner effect or perfect diamagnetism -- 5. Different types of bulk superconductors -- 5.1 Alloys -- 5.2 Niobium alloys -- 5.3 Oxides, cuprates and ceramics -- 5.4 Fullerenes -- 6. Applications -- 6.1 Superconductor magnets and ordinary electromagnets -- 6.2 High field magnets -- 6.3 Magnetic levitation -- 6.4 Medical applications -- 6.5 Detectors -- 6.6 Josephson junctions -- Conclusion and future outlook -- Reference -- 8 -- Soft Superconductors: Materials and Applications -- 1. Introduction -- 2. Type 1 Superconductors -- 3. Structural properties of superconductors -- 4. A3B structure superconductors -- 5. MMo6X8& -- M2A3X3 structures superconductors -- 6. Cuprate superconductors structures -- 7. Production of superconductors -- 8. Wire production -- 9. Thin films production -- 10. Superconductor applications -- Conclusion -- References -- 9 -- Oxide Superconductors -- 1. Background -- 2. Unusual properties super conducting materials and proposed theories and hypothesis -- 3. Cooper pair model -- 4. Crystal structure analysis of superconducting materials -- 5. Applications of oxide superconductor -- Conclusions -- References -- 10 -- High Temperature Superconductors: Materials and Applications -- 1. Introduction -- 2. Science of HTSC -- 3. Nickel based HTSC -- 4. HTSC for fusion reactors. , 5. HTSC magnetic energy storage for power applications -- 6. HTSC materials based on bismuth -- 7. HTSC in co-axial magnetic gear -- Conclusions -- References -- 11 -- Superconducting Metamaterials and their Applications -- 1. Superconducting materials -- 2. Metamaterials -- 2.1 Low loss metamaterials -- 2.2 Scaling of SRR properties -- 2.3 Scaling of wire array properties -- 3. Novel superconducting metamaterial implementations -- 3.1 Ferromagnet- superconductor composites -- 3.2 DC magnetic superconducting metamaterials -- 3.3 SQUID metamaterials -- 4. Superconducting photonic crystal -- 5. Thin film superconducting metamaterial -- 6. Advantages of metamaterials -- 6.1 Compact superconducting materials -- 6.2 Tuneability and nonlinearity -- 6.3 Implementations of superconducting metamaterials -- 7. Novel applications -- Conclusion -- References -- 12 -- Superconductors for Medical Applications -- 1. Introduction -- 2. Medical applications -- 2.1 Magnetic resonance imaging (MRI) -- 2.1.1 Quench protection design of MRI superconducting magnet -- 2.1.2 Open MRI superconducting magnet -- 2.1.3 MRI food inspection system -- 2.2 Magnetic gene transfer -- 2.3 Magnetic drug delivery system -- 2.4 Cancer and internal hemorrhage detection -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors -- Superconductors for Magnetic Imaging Resonance Applications -- 1. Introduction -- 2. History of superconductor materials for MRI -- 2.1 Liquid helium free SN2 high-temperature fuperconductor magnet -- 2.2 Bismuth strontium calcium copper oxide (Bi2223): First SN2-HTS magnet -- 2.3 Magnesium diboride superconductors -- 2.3.1 Challenges and prospects for MgB2 MRI magnets -- 3. Potential superconductors for MRIs -- 3.1 Nb-Ti and Nb3Sn superconductors -- 3.2 Copper based superconductors. , 3.3 Rare - earth barium copper oxide superconductors (REBCO) -- 3.4 MgB2 superconductors -- 3.5 Iron-based superconductors (IBS) -- 4. Materials' and their applications' prospects in the future -- Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Capacitors. ; Electrochemical capacitors. ; Electronic books.
    Description / Table of Contents: The book explores recent developments in the area of composite applications for supercapacitor electrodes based von conducting polymers, graphene, biomass, or carbonaceous quantum dots. Synthesis strategies of composite materials and electrode preparation methods are discussed in detail.
    Type of Medium: Online Resource
    Pages: 1 online resource (215 pages)
    Edition: 1st ed.
    ISBN: 9781945291531
    Series Statement: Materials Research Foundations Series ; v.24
    DDC: 621.315
    Language: English
    Note: Intro -- frontpages -- 1 -- 1. Introduction -- 2. The preparation of graphene -- 3. Graphene-metal compound composites -- 3.1 Graphene-MnO2 composites -- 3.2 Graphene-Mn3O4 composites -- 3.3 Graphene-ZnO composites -- 3.4 Graphene-CeO2 composites -- 3.5 Graphene-Co3O4 composites -- 3.6 Graphene-NiO composites -- 4. Graphene-polymer composites -- 4.1 Graphene-PPY based composites -- 4.2 Graphene-PAN based composites -- 4.3 Graphene-biopolymer composite materials -- 5. 3D graphene-based composites -- 6. Multifunctional graphene-based electrode materials -- 6.1 Ternary graphene-polymer-nanocarbon composites -- 6.2 Ternary graphene-polymer-metal oxide composites -- 6.3 Ternary graphene-polymer-polymer composites -- 7. Conclusions -- Acknowledgments -- References -- 2 -- 1. Biomass-derived carbon -- 2. Use of biomass based activated carbon in electrochemical capacitor -- Conclusion -- References -- 3 -- 1. Introduction -- 2. Experimental -- 2.1. Materials and instrumentation -- 2.2 Preparation of electrode and electrochemical characterization -- 2.3 Sonochemical synthesis of RuO2 nanogranules -- 2.4 Sonochemical synthesis of conducting polymer/RuO2 composite -- 3. Results and discussion -- Conclusions -- References -- 4 -- 1. Introduction -- 2. Fundamentals of supercapacitors -- 2.1 Types of supercapacitors -- 2.2 Parameters for supercapacitors -- 3. Synthesis methods -- 4. Electrode materials of transition metal oxides/hydroxides -- 4.1 Ruthenium oxide -- 4.2 Manganese oxide -- 4.3 Nickel oxide/Nickel hydroxide (NiO/Ni(OH)2) -- 4.4 Cobalt oxide/hydroxide (Co3O4/Co(OH)2) -- 4.5 Iron oxides (Fe2O3 and Fe3O4) -- 4.6 Molybdenum oxides -- 4.7 Vanadium pentoxide -- 4.8 Tin oxide -- 4.9 Indium oxide (In2O3) -- 4.10 Bismuth oxide -- 4.11 Binary metal oxides -- 5. Application of supercapacitors -- Conclusions -- References -- 5 -- 1. Introduction. , 2. Experimental -- 2.1 Materials and instrumentation -- 2.2 Preparation PANI-ZrO2 composite (PZA) by aqueous polymerization pathway -- 2.3 Preparation of PANI-ZrO2 composite (PZE) by emulsion polymerization pathway -- 2.4 Preparation of PANI-ZrO2 composite (PZI) by interfacial polymerization pathway -- 2.5 Ion exchange capacity (IEC) of PANI-ZrO2 composites -- 3. Results and discussion -- 3.1 Synthesis and physical properties of hybrid PANI-ZrO2 composites -- 3.2 Spectral properties of hybrid PANI-ZrO2 composites -- 3.3 Thermal behavior of hybrid PANI-ZrO2 composites -- 3.4 Electrochemical performances of hybrid PANI-ZrO2 composites -- Conclusion -- References -- 6 -- 1. Introduction -- 2. Carbonaceous-CQDs composites -- 3. Inorganic-CQDs composites -- 4. Conducting polymer-CQDs composites -- 5. Summary and outlook -- References -- 7 -- 1. Introduction -- 2. Supercapacitors -- 3.1 Classification of supercapacitors -- 3.1 Electrostatic capacitors -- 3.2 Pseudocapacitors -- 3.3 Hybrid electrochemical capacitors -- 4. Charge storage mechanism -- 5. Electrode materials -- 6. Transition metal oxides as pseudocapacitor electrodes -- 7. Synthesis of transition metal oxides based electrode material -- 8 Sol-Gel synthesis -- 9. Sol-gel synthesis of transition metal oxides based electrode materials -- 10. Metal oxide /carbon composites as pseudocapacitors electrode material -- 11. Binary metal oxide as electrode material -- Conclusion -- References -- 8 -- 1. Introduction -- 2. Experimental -- 2.1 Sample preparation -- 2.2 Characterization techniques -- 3. Results and discussion -- 4. Conclusions -- References -- keywords_editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book focuses on the applications of ion exchange resins in processes.
    Type of Medium: Online Resource
    Pages: 1 online resource (175 pages)
    Edition: 1st ed.
    ISBN: 9781644902219
    Series Statement: Materials Research Foundations Series ; v.137
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of Ion Exchange Resins in Protein Separation and Purification -- 1. Introduction -- 2. Types of ion exchange resins -- 3. Functionalization of ion exchange resin -- 4. Characterization of ion exchange resin -- 4.1 Elemental analysis -- 4.2 FT-IR spectra -- 4.3 Thermogravimetric analysis -- 5. Analysis of variables for protein IEC -- 5.1 Stability and pI of proteins -- 5.2 Effect of the support on the chromatographic separation of proteins -- 5.3 Effect of buffer and mobile phase -- 6. Steps of protein separation by IEC -- 7. Types of protein purified by IEC -- 8. Future prospects of IEC -- Acknowledgments -- References -- 2 -- Applications of Ion Exchange Resins in Vitamins Separation and Purification -- 1. Introduction -- 2. Importance of vitamins -- 3. Categorisation of vitamins -- 3.1 Water soluble vitamins -- 3.2 Fat soluble vitamins -- 4. Origin of vitamins -- 5. Isolation and purgation of vitamin -- 6. Ion-exchange chromatography -- 7. Ion exchange chromatographic isolation and purgation of vitamin K1 -- 8. Ion exchange chromatographic isolation and purgation of vitamin C -- 9. Ion exchange chromatographic isolation and purgation of vitamin B1, vitamin B2 and vitamin B6 -- Conclusion -- References -- 3 -- Application of Ion Exchange Resins in Protein Separation and Purification -- 1. Basic principle of protein separation and purification by chromatographic method -- 2. Chromatographic methods of protein purification -- 2.1 Gel filtration or permeation chromatography -- 2.2 Affinity chromatography -- 2.3 Immuno affinity chromatography -- 2.4 Metal chelate chromatography -- 2.5 Other Chromatographic techniques -- 3. Principle of separation of proteins by ion exchange chromatography -- 4. Strong and weak ion exchange resin -- 5. Choice of buffer. , 6. Experimental procedure of ion exchange resin -- 6.1 Equilibration -- 6.2 Sample Application and Wash -- 6.3 Elution -- 6.4 Regeneration -- 7. Morphology of ion exchange resin -- 7.1 Capacity of ion exchange resin -- 7.2 Stability -- 7.3 Cross linking of resins -- 7.4 Donnan equilibrium -- 8. Parameters for optimisation of ion exchange methods -- 8.1 Resolution -- 8.2 Efficiency -- 8.3 Selectivity -- Summary -- References -- 4 -- Ion Exchange Resins for Selective Separation of Toxic Metals -- 1. Introduction -- 2. Ion exchange resins (IERs) -- 3. Type of IERs -- 4. Synthesis of IERs -- 5. Uses of IERs -- 6. Activity of IERs -- 7. Properties of IERs -- 7.1 IE capacity of resin -- 7.2 Water retention capacity of ion exchange resin -- 7.3 Density of ion exchange resin -- 7.4 Surface area of ion exchange resin -- 7.5 Regeneration of ion exchange resin -- 8. Selectivity of IERs -- 9. Toxic metals -- 10. Selective separation of toxic metals -- 11. Modern ion exchange separation method in industry and its future prospects -- Conclusion -- References -- 5 -- Separation and Purification of Bioactive Molecules by Ion Exchange -- 1. Introduction -- 1.1 Reversed phase chromatography -- 2. Polymeric sorbents for preparative chromatography of biologically active compounds -- 2.1 Designing a biochemical purification -- 3. Ion-exchange separation and purification of polyphenols -- 3.1 Separation of bioactive catechin derivatives by AEC -- 4. Ion-exchange separation and purification of protein -- 5. Use of ion-exchange chromatography for the separation of peptide -- 5.1 Separation of human C-peptide by ion exchange -- 6. Separation of Alkaloids from Chinese Medicines by ion-exchange -- 7. Separation of plasmid DNA using ion-exchange chromatography -- 8. Separation of carbohydrates from seaweed using ion-exchange chromatography -- 9. Future Prospects -- References. , 6 -- Ion Exchange Resins as Carriers for Sustained Drug Release -- 1. Introduction -- 2. Principles of sustained drug release -- 2.1 Evolution of sustained drug delivery systems -- 2.2.1 First-generation delivery systems -- 2.2.2 Second-generation delivery systems -- 2.2.3 Third/ Next generation delivery systems -- 3. Types of sustained drug delivery systems -- 3.1 Diffusion-controlled system -- 3.1.1 Reservoir system -- 3.1.2 Matrix system -- 3.2 Osmotic system -- 3.3 Floating system -- 3.4 Bioadhesive system -- 3.5 Liposome system -- 4. IERs as drug delivery systems -- 4.1 Chemistry of IERs -- 4.2. Complexation of IER and the drug -- 4.2.1 Selection of the drug -- 4.2.2 Purification of resins -- 4.2.3 Drug loading -- 4.2.3.1 Batch method -- 4.2.3.2 Column method -- 4.2.4 Factors affecting drug loading -- 4.2.4.1 Particle size -- 4.2.4.2 Porosity and swelling -- 4.2.4.3 Available capacity -- 4.2.4.4 Acid-base strength -- 4.2.5 Evaluation of drug resinates -- 5. Modified resinates -- 6. Release kinetics of drugs complexed with IERs -- 7. Efficiency of IERs as the delivery mechanism -- 7.1 Oral drugs -- 7.2 Nasal drugs -- 7.3 Ophthalmic drugs -- 7.4 Oro-dispersible films (ODF) -- 7.5 Oral liquid suspensions -- 8. Commercial IERs used in sustained drug delivery -- 8.1 Dowex 50W -- 8.2 Indion 244 -- 8.3 Amberlite IRP-69 -- 9. Future perspectives -- References -- 7 -- Ion Exchange Resins for Clinical Applications -- 1. Introduction -- 2. Application of resins in formulation-related issues -- 2.1 Taste development -- 2.2 Aiding in dissolution -- 2.3 Role as disintegrating agents -- 2.4 Drug stabilization -- 2.5 Water purification for the production of pharmaceuticals -- 2.6 Anti-deliquescence -- 3. Applications in drug release systems -- 3.1 Simple resinates -- 3.2 Microencapsulated resinates -- 3.3 Hollow fiber system -- 3.4 Gastric retentive system. , 3.5 Sigmoidal release system -- 4. Applications in targeted drug delivery -- 4.1 Oral drug delivery -- 4.2 Nasal drug delivery -- 4.3 Transdermal drug delivery -- 4.4 Ophthalmic drug delivery -- 4.5 Application in cancer treatment -- 5. Applications in therapeutics -- 5.1 High cholesterol treatment -- 5.2 Application in treatment of pruritus -- 5.3 Applications in treating of oedema -- 5.4 Application in the treatment of cardiac oedema -- 5.5 Applications as antacids -- 5.6 Treating uremia -- Conclusion -- References -- 8 -- Applications of Ion Exchange Resins in Water Softening -- 1. Introduction -- 2. Water hardness -- 2.1 Salts providing hardness -- 2.2 Negative effect of water hardness -- 3. Ion exchange resins for water softening -- 3.1 Strongly acidic resins -- 3.2 Weakly acidic resins -- 3.3 Polymer-inorganic resins -- 4. Regeneration of ion exchange resins and their fouling -- 5. Ion exchange in a combination with other processes -- 5.1 Ion exchange and ultrasound -- 5.2 Ion exchange and electrodialysis -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...