GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • El Nino  (1)
  • Human colon adenocarcinoma  (1)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(15), (2020): 6707-6730, https://doi.org/10.1175/JCLI-D-19-0579.1.
    Description: The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.
    Description: This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. CCU acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. MF was supported by the by Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania. The authors wish to acknowledge PyFerret (https://ferret.pmel.noaa.gov/Ferret/) and the Cimate Data Operators (https://code.mpimet.mpg.de/projects/cdo/) for the data analysis and graphical representations in this paper.
    Keywords: Atmosphere-ocean interaction ; El Nino ; Extreme events ; La Nina ; Precipitation ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cancer immunology immunotherapy 33 (1991), S. 158-164 
    ISSN: 1432-0851
    Keywords: Tumor spheroid ; Tumor necrosis treatment ; Radioimmunotherapy ; Human colon adenocarcinoma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Radiolabeled murine monoclonal antibody TNT-1, directed against the nuclear histones of degenerating cells, was used to treat human colon adenocarcinoma HT-29 spheroids in vitro. The therapeutic effects of131I-TNT-1 were investigated as a function of the radioactive dose, treatment time, and number of treatments. Efficacy of treatment was assessed by TNT-1 antibody uptake, spheroid growth delay, and morphological examination using light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). From these studies, it was determined that the therapeutic effect increased with the number of doses and the duration of treatment. Spheroids treated for 24 h showed approximately two to four times more cell death than those with a 2-h treatment. As previously shown in animal models, additonal treatment with radiolabeled TNT-1 produced an expanding number of TNT-1 targets, and subsequent treatments were more effective as shown by antibody uptake studies. Microscopic examinations demonstrated that morphological changes consistent with spheroid destruction correlated well with antibody uptake data and increased gradually with dose, treatment time, and frequency of treatments. At the ultrastructural level, destruction of cells in the treated spheroids included the formation of porous cell membranes, crater-like holes (SEM), blebbing, and dissolution of cytoplasmic organelles (TEM). With continued culture, the injured spheroids were found to disaggregate after intensive131I-TNT-1 therapy (e.g. 50 µCi/ml or 100 µCi/ml with two or three 24-h treatments). These findings suggest that tumor spheroids can be used as an in vitro model to evaluate monoclonal antibody therapy using TNT-1 and other candidate mAbs directed against intracellular antigens exposed in degenerating cells of tumors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...