GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Marine biotoxins and harmful algae represent a significant and expanding threat to human health and fisheries resources throughout the U.S. This problem takes many forms, ranging from massive "red tides" or blooms of cells that discolor the water to dilute, inconspicuous concentrations of cells noticed only because of the harm caused by the highly potent toxins those cells contain. Impacts include mass mortalities of wild and farmed fish, human intoxications and death from contaminated shellfish or fish, alterations of marine trophic structure, and death of marine mammals, seabirds, and other animals. The nature of the problem has changed considerably over the last two decades in the U.S. Where formerly a few regions were affected, now virtally every coastal state is threatened, in many cases over large geographic areas and by more than one harmful species. The U.S. research, monitoring, and regulatory infrastructure is not adequately prepared to meet this expanding threat. In an effort to surmount these problems, a workshop was convened to formulate a National Plan for the prediction, control, and mitigation of the effects of harmful algal blooms on the U.S. marine biota. This report summarizes the status of U.S. research knowledge and capabilties, and identifies areas where research funds should be directed for maximum benefit.
    Description: Funding was provided by National Marine Fisheries Servce Saltonstall-Kennedy grant No. NA27FD0092-01, National Marine Fisheries Servce Charleston Laboratory and by the NOAA Coastal Oceans Program.
    Keywords: Marine biotoxins ; Harmful algae blooms ; Red tides
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 5740725 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 2 (2012): 2588–2599, doi:10.1002/ece3.373.
    Description: In Massachusetts, paralytic shellfish poisoning (PSP) is annually recurrent along the coastline, including within several small embayments on Cape Cod. One such system, the Nauset Marsh System (NMS), supports extensive marshes and a thriving shellfishing industry. Over the last decade, PSP in the NMS has grown significantly worse; however, the origins and dynamics of the toxic Alexandrium fundyense (Balech) populations that bloom within the NMS are not well known. This study examined a collection of 412 strains isolated from the NMS and the Gulf of Maine (GOM) in 2006–2007 to investigate the genetic characteristics of localized blooms and assess connectivity with coastal populations. Comparisons of genetic differentiation showed that A. fundyense blooms in the NMS exhibited extensive clonal diversity and were genetically distinct from populations in the GOM. In both project years, genetic differentiation was observed among temporal samples collected from the NMS, sometimes occurring on the order of approximately 7 days. The underlying reasons for temporal differentiation are unknown, but may be due, in part, to life-cycle characteristics unique to the populations in shallow embayments, or possibly driven by selection from parasitism and zooplankton grazing; these results highlight the need to investigate the role of selective forces in the genetic dynamics of bloom populations. The small geographic scale and limited connectivity of NMS salt ponds provide a novel system for investigating regulators of blooms, as well as the influence of selective forces on population structure, all of which are otherwise difficult or impossible to study in the adjacent open-coastal waters or within larger estuaries.
    Description: This study was funded through the Woods Hole Center for Oceans and Human Health, National Science Foundation OCE-0430724 and National Institutes of Health 1 P50 ES012742-01, and National Science Foundation OCE-0911031. Funding was also provided by NOAA Grant NA06NOS4780245.
    Keywords: Alexandrium ; Amoebophrya ; Dinoflagellate ; Gulf of Maine ; Microsatellites ; Nauset Marsh ; Paralytic shellfish poisoning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 163-173, doi:10.1016/j.dsr2.2012.11.002.
    Description: A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l-1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank.
    Description: We appreciate financial support of the National Oceanic Atmospheric Administration (grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program) and the Woods Hole Center for Oceans and Human Health through National Science Foundation grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grant 1P50-ES01274201.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Paralytic shellfish poisoning ; USA ; Gulf of Maine ; Georges Bank
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Harmful Algae 34 (2014): 56–68, doi:10.1016/j.hal.2014.02.007.
    Description: Ciguatera is a serious seafood poisoning syndrome caused by the consumption of ciguatoxin-contaminated finfish from tropical and subtropical regions. This study examined the community structure of ciguatera-associated dinoflagellates and the distribution pattern, taxonomy and toxicity of Gambierdiscus spp. from a high-risk area of Marakei, Republic of Kiribati. The genera Gambierdiscus, Prorocentrum, Ostreopsis, Amphidinium and Coolia were present, and generally the former three dominated the dinoflagellate assemblage. Among these three, Gambierdiscus was the most abundant dinoflagellate genus observed at three of the four sites sampled, two of which (Sites 1 and 2) were on the northern half of the island and two (Sites 3 and 4) on the southern half. The following patterns of abundance were observed among sites: (1) Average Gambierdiscus spp. abundance at the northern sites exceeded the southern sites by a factor of 19-54; and (2) Gambierdiscus spp. abundance at shallow sites (2-3 m) exceeded deeper sites (10-15 m). The distribution of Gambierdiscus spp. at Marakei corresponded with previously observed patterns of fish toxicity, with fish from southern locations being much less toxic than fish sampled north of the central channel. DNA sequencing identified three Gambierdiscus species (G. carpenteri, G. belizeanus, G. pacificus) and three previously unreported ribotypes (Gambierdiscus sp. type 4, Gambierdiscus sp. type 5, Gambierdiscus sp. type 6) in the samples; Gambierdiscus sp. type 4 may represent a Pacific clade of Gambierdiscus sp. ribotype 1. Toxicity analyses determined that Gambierdiscus sp. type 4 isolates were more toxic than the Gambierdiscus sp. type 5 and G. pacificus isolates, with toxin contents of 2.6-6.0 (mean: 4.3± 1.4), 0.010 and 0.011 fg P-CTX-1 eq cell-1, respectively. Despite low densities of Gambierdiscus spp. observed at Marakei relative to other studies in other parts of the world, the presence of low and moderately toxic populations may be sufficient to render the western coast of Marakei a high-risk area for ciguatera. The long history of toxicity along the western side of Marakei suggests that large-scale oceanographic forcings that regulate the distribution of Gambierdiscus spp. along the western side of Marakei may have remained relatively stable over that time. Chronic as well as acute exposure to ciguatoxins may therefore pose an important human health impact to the residents of Marakei.
    Description: Funding for this work was provided by the Centers for Disease Control and Prevention (U01 EH000421), USFDA (F223201000060C), NOAA NOS (Cooperative Agreement NA11NOS4780060, NA11NOS4780028), National Program on Key Basic Research Project of China (973 Program, 2013CB956503), the Nonprofit Research Project for the State Oceanic Administration (China, 201005006-01), and the National Natural Science Foundation of China (41276110).
    Keywords: Ciguatera fish poisoning ; Ciguatoxins ; Gambierdiscus ; Ostreopsis ; HABs ; Kiribati
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 547 (2016): 33-46, doi:10.3354/meps11660.
    Description: The bloom-forming dinoflagellate Alexandrium fundyense has been extensively studied due its toxin-producing capabilities and consequent impacts to human health and economies. This study investigated the prevalence of resting cysts of A. fundyense in western Greenland and Iceland to assess the historical presence and magnitude of bloom populations in the region, and to characterize environmental conditions during summer, when bloom development may occur. Analysis of sediments collected from these locations showed that Alexandrium cysts were present at low to moderate densities in most areas surveyed, with highest densities observed in western Iceland. Additionally, laboratory experiments were conducted on clonal cultures established from isolated cysts or vegetative cells from Greenland, Iceland, and the Chukchi Sea (near Alaska) to examine the effects of photoperiod interval and irradiance levels on growth. Growth rates in response to the experimental treatments varied among isolates, but were generally highest under conditions that included both the shortest photoperiod interval (16h:8h light:dark) and higher irradiance levels (~146-366 µmol photons m-2 s-1), followed by growth under an extended photoperiod interval and low irradiance level (~37 µmol photons m-2 s-1). Based on field and laboratory data, we hypothesize that blooms in Greenland are primarily derived from advected Alexandrium populations, as low bottom temperatures and limited light availability would likely preclude in situ bloom development. In contrast, the bays and fjords in Iceland may provide more favorable habitat for germling cell survival and growth, and therefore may support indigenous, self-seeding blooms.
    Description: Funding for this study was provided by the James M. and Ruth P. Clark Arctic Research Initiative to Anderson and Richlen, and for the ARCHEMHAB expedition via the Helmholtz Institute initiative Earth and Environment under the PACES Program Topic 2 Coast (Workpackage 3) of the Alfred Wegener Institute. Additional support was provided by the Woods Hole Center for Oceans and Human Health through National Science Foundation (NSF) Grant OCE-1314642 and National Institute of Environmental Health Sciences (NIEHS) Grant 1-P01-ES021923-01.
    Description: 2017-04-07
    Keywords: Arctic ; Alexandrium ; Dinoflagellate ; Cysts ; Harmful algal bloom
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Blooms of toxic or harmful microalgae, commonly called "red tides," represent a significant and expanding threat to human health and fisheries resources throughout the United States and the world. Ecological, aesthetic, and public health impacts include: mass mortalities of wild and farmed fish and shellfish, human intoxication and death from the consumption of contaminated shellfish or fish, alterations of marine food webs through adverse effects on larvae and other life history stages of commercial fish species, the noxious smell and appearance of algae accumulated in nearshore waters or deposited on beaches, and mass mortalities of marine mammals, seabirds, and other animals. In this report, we provide an estimate of the economic impacts of HABs in the United States from events where such impacts were measurable with a fair degree of confidence during the interval 1987-92. The total economic impact averaged $49 million per year, with public health impacts representing the largest component (45 percent). Commercial fisheries impacts were the next largest (37 percent of the total), while recreation/tourism accounted for 13 percent, and monitoring/management impacts 4 percent. These estimates are highly conservative, as many economic costs or impacts from HABs could not be estimated.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grants No. NA46RG0470 and NA90AA-D-SG480, the National Science Foundation under Grant No. OCE-9321244, and the Johnson Endowment of the Marine Policy Center.
    Keywords: Harmful algal blooms ; HABs ; Red tides ; Economic impacts ; Brown tides ; United States
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 8091490 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Protist 169 (2018): 645-661, doi:10.1016/j.protis.2018.06.001.
    Description: Many dinoflagellate cysts experience dormancy, a reversible state that prevents germination during unfavorable periods. Several of these species also cause harmful algal blooms (HABs), so a quantitative understanding of dormancy cycling is desired for better prediction and mitigation of bloom impacts. This study examines the effect of cold exposure on the duration of dormancy in Alexandrium catenella, a HAB dinoflagellate that causes paralytic shellfish poisoning (PSP). Mature, dormant cysts from Nauset Marsh (Cape Cod, MA USA) were stored at low but above freezing temperatures for up to six months. Dormancy status was then determined at regular intervals using a germination assay. Dormancy timing was variable among temperatures and was shorter in colder treatments, but the differences collapse when temperature and duration of storage are scaled by chilling-units (CU), a common horticultural predictor of plant and insect development in response to weather. Cysts within Nauset meet a well-defined chilling requirement by late January, after which they are poised to germinate with the onset of favorable conditions in spring. Cysts thus modulate their dormancy cycles in response to their temperature history, enhancing the potential for new blooms and improving this species’ adaptability to both unseasonable weather and new habitats/climate regimes.
    Description: This work was supported by the National Science Foundation [OCE-0430724, OCE-0911031]; the National Institute of Environmental Health Sciences [1P50-ES01274201, 1P01ES021923]; the National Park Service Cooperative Agreement [H238015504]; and the Friends of Cape Cod National Seashore.
    Keywords: Resting cyst ; Dinoflagellate ; Dormancy ; Chilling ; Germination ; Endogenous clock
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 2698-2714, doi:10.1016/j.dsr2.2005.06.021.
    Description: Observations of Alexandrium fundyense in the Gulf of Maine indicate several salient characteristics of the vegetative cell distributions: patterns of abundance are gulf-wide in geographic scope; their main features occur in association with the Maine Coastal Current; and the center of mass of the distribution shifts upstream from west to east during the growing season from April to August. The mechanisms underlying these aspects are investigated using coupled physical-biological simulations that represent the population dynamics of A. fundyense within the seasonal mean flow. A model that includes germination, growth, mortality, and nutrient limitation is qualitatively consistent with the observations. Germination from resting cysts appears to be a key aspect of the population dynamics that confines the cell distribution near the coastal margin, as simulations based on a uniform initial inoculum of vegetative cells across the Gulf of Maine produces blooms that are broader in geographic extent than is observed. In general, cells germinated from the major cyst beds (in the Bay of Fundy and near Penobscot and Casco Bays) are advected in the alongshore direction from east to west in the coastal current. Growth of the vegetative cells is limited primarily by temperature from April through June throughout the gulf, whereas nutrient limitation occurs in July and August in the western gulf. Thus the seasonal shift in the center of mass of cells from west to east can be explained by changing growth conditions: growth is more rapid in the western gulf early in the season due to warmer temperatures, whereas growth is more rapid in the eastern gulf later in the season due to severe nutrient limitation in the western gulf during that time period. A simple model of encystment based on nutrient limitation predicts deposition of new cysts in the vicinity of the observed cyst bed offshore of Casco and Penobscot Bays, suggesting a pathway of re-seeding the bed from cells advected downstream in the coastal current. A retentive gyre at the mouth of the Bay of Fundy tends to favor re-seeding that cyst bed from local populations.
    Description: We gratefully acknowledge the support of the US ECOHAB Program, sponsored by NOAA, NSF, EPA, NASA, and ONR.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Paralytic shellfish poisoning ; USA ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1990936 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.
    Description: Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.
    Description: Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH).
    Keywords: Harmful algal blooms ; HABs ; Red tides ; Eutrophication ; Nutrients ; Nitrogen ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. EHP is a publication of the United States government. Publication of EHP lies in the public domain and is therefore without copyright. The definitive version was published in Environmental Health Perspectives 109 Supplement 5 (2001): 695-698.
    Description: Public and political concerns about Pfiesteria from 1997 to the present vastly exceed the attention given to other harmful algal bloom (HAB) issues in the United States. To some extent, the intense focus on Pfiesteria has served to increase attention on HABs in general. Given the strong and continuing public, political, and research interests in Pfiesteria piscicida Steidinger & Burkholder and related organisms, there is a clear need for information and resources of many different types. This article provides information on Pfiesteria-related educational products and information resources available to the general public, health officials, and researchers. These resources are compiled into five categories: reports; website resources; state outreach and communication programs; fact sheets; and training manuals and documentaries. Over the last few years there has been rapid expansion in the amount of Pfiesteria-related information available, particularly on the Internet, and it is scattered among many different sources.
    Description: This research was supported by the following grants to D.M. Anderson: National Oceanic & Atmospheric Administration grant NA97OA0355 and U.S. Environmental Protection Agency grant X-82838701-0.
    Keywords: Communication and outreach ; Dinoflagellate ; Fish kill ; HAB ; Harmful algal bloom ; Pfiesteria ; Pfiesteria-like organisms ; Pfiesteria Interagency Coordination Workgroup (PICWG)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 549390 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...