GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6503-6520, doi:10.1029/2018JC014049.
    Description: During the seasonal evolution of stratification on the New Jersey shelf in the fall, strong thermal stratification that was established in the preceding summer is broken down through wind‐driven processes and surface cooling. Ten years of output from a Regional Ocean Modeling Systems run and a one‐dimensional mixed layer model is used here to examine the interannual variability in the strength of the stratification and in the processes that reduce stratification in fall. Our analysis shows that the strength of the stratification at the end of the summer is not correlated with the timing of shelf destratification. This indicates that processes that occur within the fall are more important for the timing of stratification breakdown than are the initial fall conditions. Furthermore, wind‐driven processes reduce a greater fraction of the stratification in each year than does the surface cooling during the fall. Winds affect the density gradients on the shelf through both changes to the temperature and salinity fields. Processes associated with the downwelling‐favorable winds are more effective than those during upwelling‐favorable winds in breaking down the vertical density gradients. In the first process, cross‐shelf advective fluxes during storms act to decrease stratification during downwelling‐favorable winds and increase stratification during upwelling‐favorable winds. Second, there is also enhanced velocity shear during downwelling‐favorable winds, which allows for more shear instabilities that break down stratification via mixing. Observational data and model output from Tropical Storm Ernesto compare favorably and suggest that downwelling‐favorable winds act through the mechanisms identified from the Regional Ocean Modeling Systems results.
    Description: DOC | National Oceanic and Atmospheric Administration (NOAA) Grant Number: NA13OAR4830233; NSF | GEO | Division of Ocean Sciences (OCE) Grant Number: 1558960
    Description: 2019-03-12
    Keywords: Middle Atlantic Bight ; Fall stratification ; Ekman buoyancy flux ; ROMS ; Interannual variability ; Storms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C04011, doi:10.1029/2010JC006863.
    Description: Observations show that the Kuroshio in the East China Sea (ECS-Kuroshio) responds to the large-scale wind stress curl field at two time scales. It is argued that these two responses are related to barotropic and baroclinic modes that reach the ECS via different waveguides. Variability in the ECS-Kuroshio is assessed by comparing satellite altimetry, historical hydrography, and the Pacific Decadal Oscillation (PDO) index with the latter used as a proxy for the large-scale wind stress curl forcing. Sea level difference across the ECS-Kuroshio is positively correlated with PDO at zero lag and negatively correlated at 7 year lag. In contrast, pycnocline steepness and PDO are uncorrelated at zero lag and negatively correlated at 7 year lag. These signals in the ECS-Kuroshio, considered together with wind stress curl anomalies in the open ocean, are consistent with a barotropic response to the wind at zero lag. The barotropic response is likely forced in the central North Pacific by wind stress curl anomalies of opposite sign, one of which is centered at ECS latitudes (∼27°N) while the other sits further north. This suggests that, in general, the absolute transport at a given latitude is not simply that predicted by the Sverdrup balance along the latitude. This is a consequence of waveguides that can steer the barotropic mode across latitude lines. In contrast, the signals that lag PDO by 7 years are consistent with a baroclinic mode, which represents the ocean's time-integrated response to the wind stress curl along a single latitude band between 24°N and 27°N.
    Description: M.A. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Ocean and Climate Change Institute. Further support was provided to M.A., Y.‐O.K., and J.Y. by NSF under grant OCE‐1028739.
    Keywords: Kuroshio ; Hydrography ; Altimetry ; Rossby waves ; Interannual variability ; PDO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 1042–1057, doi:10.1175/JTECH-D-14-00161.1.
    Description: A 1-yr experiment using a pressure-sensor-equipped inverted echo sounder (PIES) was conducted in Sermilik Fjord in southeastern Greenland (66°N, 38°E) from August 2011 to September 2012. Based on these high-latitude data, the interpretation of PIESs’ acoustic travel-time records from regions that are periodically ice covered were refined. In addition, new methods using PIESs for detecting icebergs and sea ice and for estimating iceberg drafts and drift speeds were developed and tested. During winter months, the PIES in Sermilik Fjord logged about 300 iceberg detections and recorded a 2-week period in early March of land-fast ice cover over the instrument site, consistent with satellite synthetic aperture radar (SAR) imagery. The deepest icebergs in the fjord were found to have keel depths greater than approximately 350 m. Average and maximum iceberg speeds were approximately 0.2 and 0.5 m s−1, respectively. The maximum tidal range at the site was ±1.8 m and during neap tides the range was ±0.3 m, as shown by the PIES’s pressure record.
    Description: This work was supported by the National Science Foundation through the Divisions of Ocean Science and Polar Programs under Grant PLR-1332911. A. Silvano was supported as a WHOI guest student through a Gori Fellowship.
    Keywords: Glaciers ; Sea ice ; Ice thickness ; Data processing ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 2185-2203, doi:10.1175/JTECH-D-16-0095.1.
    Description: This study presents amended procedures to process and map data collected by pressure-sensor-equipped inverted echo sounders (PIESs) in western boundary current regions. The modifications to the existing methodology, applied to observations of the Kuroshio from a PIES array deployed northeast of Luzon, Philippines, consist of substituting a hydrography-based mean travel time field for the PIES-based mean field and using two distinct gravest empirical mode (GEM) lookup tables across the front that separate water masses of South China Sea and North Pacific origin. In addition, this study presents a method to use time-mean velocities from acoustic Doppler current profilers (ADCPs) to reference (or “level”) the PIES-recorded pressures in order to obtain time series of absolute geostrophic velocity. Results derived from the PIES observations processed with the hydrography-based mean field and two GEMs are compared with hydrographic profiles sampled by Seagliders during the PIES observation period and with current velocity measured concurrently by a collocated ADCP array. The updated processing scheme leads to a 41% error decrease in the determination of the thermocline depth across the current, a 22% error decrease in baroclinic current velocity shear, and a 61% error decrease in baroclinic volume transports. The absolute volume transport time series derived from the leveled PIES array compares well with that obtained directly from the ADCPs with a root-mean-square difference of 3.0 Sv (1 Sv ≡ 106 m3 s–1), which is mainly attributed to the influence of ageostrophic processes on the ADCP-measured velocities that cannot be calculated from the PIES observations.
    Description: The authors are supported by the Office of Naval Research (ONR) Departmental Research Initiative entitled Origins of the Kuroshio and Mindanao Currents (ONR Grant N00014-10-1-0397). MA was supported by ONR Grants N00014-15-12593 and N00014-16-1-2668. CL was supported by ONR Grant N00014-10-0308. SJ was supported by MOST Grants NSC 101-2611-M-002-018-MY3, MOST 103-2611-M-002-011, and MOST 105-2119-M-002-042.
    Description: 2017-04-05
    Keywords: Boundary currents ; Data processing ; In situ oceanic observations ; Inverse methods ; Optimization ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...