GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Superoxide dismutase gene ; Drosophila phylogeny ; Nucleotide sequence ; Medfly Ceratitis capitata ; Intron evolution ; G + C content
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The phylogeny and taxonomy of the drosophilids have been the subject of extensive investigations. Recently, Grimaldi (1990) has challenged some common conceptions, and several sets of molecular data have provided information not always compatible with other taxonomic knowledge or consistent with each other. We present the coding nucleotide sequence of the Cu,Zn superoxide dismutase gene (Sod) for 15 species, which include the medfly Ceratitis capitata (family Tephritidae), the genera Chymomyza and Zaprionus, and representatives of the subgenera Dorsilopha, Drosophila, Hirtodrosophila, Scaptodrosophila, and Sophophora. Phylogenetic analysis of the Sod sequences indicates that Scaptodrosophila and Chymomyza branched off the main lineage before the major Drosophila radiations. The presence of a second intron in Chymomyza and Scaptodrosophila (as well as in the medfly) confirms the early divergence of these two taxa. This second intron became deleted from the main lineage before the major Drosophila radiations. According to the Sod sequences, Sophophora (including the melanogaster, obscura, saltans, and willistoni species groups) is older than the subgenus Drosophila; a deep branch splits the willistoni and saltans groups from the melanogaster and obscura groups. The genus Zaprionus and the subgenera Dorsilopha and Hirtodrosophila appear as branches of a prolific “bush” that also embraces the numerous species of the subgenus Drosophila. The Sod results corroborate in many, but not all, respects Throckmorton's (King, R.C. (ed) Handbook of Genetics. Plenum Press, New York, pp. 421–469, 1975) phylogeny; are inconsistent in some important ways with Grimaldi's (Bull. Am. Museum Nat. Hist. 197:1–139, 1990) cladistic analysis; and also are inconsistent with some inferences based on mitochondrial DNA data. The Sod results manifest how, in addition to the information derived from nucleotide sequences, structural features (i.e., the deletion of an intron) can help resolve phylogenetic issues.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Institute of Biological Sciences, 2005. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 55 (2005): 501–510, doi:10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2.
    Description: Creative approaches at the interface of ecology, statistics, mathematics, informatics, and computational science are essential for improving our understanding of complex ecological systems. For example, new information technologies, including powerful computers, spatially embedded sensor networks, and Semantic Web tools, are emerging as potentially revolutionary tools for studying ecological phenomena. These technologies can play an important role in developing and testing detailed models that describe real-world systems at multiple scales. Key challenges include choosing the appropriate level of model complexity necessary for understanding biological patterns across space and time, and applying this understanding to solve problems in conservation biology and resource management. Meeting these challenges requires novel statistical and mathematical techniques for distinguishing among alternative ecological theories and hypotheses. Examples from a wide array of research areas in population biology and community ecology highlight the importance of fostering synergistic ties across disciplines for current and future research and application.
    Description: This paper is the result of a National Science Foundation (NSF) workshop on quantitative environmental and integrative biology (DEB-0092081). J. L. G. would like to acknowledge financial support from the NSF (DEB-0107555).
    Keywords: Ecological complexity ; Quantitative conservation biology ; Cyberinfrastructure ; Metadata ; Semantic Web
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 577104 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...