GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Compound-specific radiocarbon dating  (4)
  • Organic carbon  (4)
  • Sediment  (3)
  • Sediments  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q04012, doi:10.1029/2005GC001097.
    Description: We estimate the relative contribution of relict organic matter to the acid-insoluble organic carbon (AIOC) fraction of surface sediments from Ross Sea, Antarctica, on the basis of 14C abundance. The bulk isotopic characteristics of AIOC can largely be explained by simple two-source models of modern and relict organic carbon, when samples are grouped according to two geographical regions, namely, southwestern and south central Ross Sea. This spatial variability in relict organic carbon could be controlled by proximity to the edge of the Ross Ice Shelf and ice drainage areas. Radiocarbon abundance in the AIOC is potentially an excellent tool to estimate the contribution of relict organic carbon in the Antarctic margin sediments.
    Description: This work was partly supported by a grant from Japan Society for the Promotion of Science to N.O.
    Keywords: Ross Sea ; Radiocarbon ; Sediment ; Organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 583765 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 38 (2007):1824-1837, doi:10.1016/j.orggeochem.2007.07.008.
    Description: We have investigated the relationships between radiocarbon (14C) and stable carbon (13C) isotopic composition and the different modes of binding of organic matter (OM) present in surficial sediments from near-shore and continental margin sites that vary in terms of input and depositional conditions. To improve our understanding of the entire OM pool, isotopic analysis of sedimentary sub-fractions, as opposed to individual compounds, was performed. This was achieved by sequentially treating sediments by solvent extraction to examine unbound compounds, followed by saponification to cleave ester linked moieties. Isotopic analysis was then performed on the bulk sediment and resulting residues. The molecular composition of the extracts was examined using gas chromatography/mass spectrometry (GC/MS), and the relative contributions of terrestrial and marine biomarkers were assessed. Radiocarbon abundances (Δ14C) of the bulk sediment reflect a mixture of modern, pre-aged and fossil carbon. Offsets in Δ14C between the bulk sediment and sediment residues demonstrate varying associations of these carbon pools. For the majority of sites, a negative offset between extracted (EX2 RES) and saponified (SA-RES) sediment 1 residues results from the removal of relatively 4C-rich material during saponification. Saponification extracts (SAEs) are mainly composed of short chain (n-C12 to n-C24) alkanoic acids with an even/odd dominance indicating a predominantly marine algal or microbial source. This provides evidence for the protection of labile marine carbon by chemical binding. This study aims to bridge the gap between molecular level and bulk OM analyses in marine sediments.
    Description: The work was supported by funds from the National Science Foundation (CHE-0089172; OCE-0526268).
    Keywords: Radiocarbon ; Stable carbon ; Marine ; Sediments ; Biomarker
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 290 (2010): 340-350, doi:10.1016/j.epsl.2009.12.030.
    Description: Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on cooccurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69- 71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.
    Description: This study was funded by the Helmholtz Young Investigators Group „Applications of molecular 14C analysis for the study of sedimentation processes and carbon cycling in marine sediments”. G.M. acknowledges financial support from WHOI postdoctoral scholarship program. T.I.E. was supported by NSF grant OCE-0526268. A.C.M. was supported by NSF grant ATM0602395.
    Keywords: Compound-specific radiocarbon dating ; Alkenones ; Lateral sediment transport ; Panama Basin ; Eastern Equatorial Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA1016, doi:10.1029/2004PA001103.
    Description: Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones and total organic carbon in sediments from the continental margins of Southern Chile, Northwest Africa and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000 to 4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 yrs) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2σ error or better) in the NW African and South China Sea sediments. Total-organic-matter and alkenone ages were similar off Namibia (age difference TOC-alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of pre-aged terrigenous material. In the South China Sea total organic carbon is significantly (2000-3000 yrs) older due to greater inputs of pre-aged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as sea-floor morphology, shelf width, and sediment composition, may control the age of co-occurring 2 sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregate is a key process.
    Description: GM and MK acknowledge financial support from the WHOI postdoctoral scholarship program. This work was funded by NSF grant OCE-0327405.
    Keywords: Compound-specific radiocarbon dating ; Alkenones ; High accumulation rate sediments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 74 (2010): 6788-6800, doi:10.1016/j.gca.2010.09.001.
    Description: Long-term carbon cycling and climate change are strongly dependent on organic carbon (OC) burial in marine sediments. Radiocarbon (14C) has been widely used to constrain the sources, sinks, and processing of sedimentary OC. To elucidate the dominant controls on the radiocarbon content of total organic carbon (14CTOC) accumulating in surface sediments we construct a box model that predicts 14CTOC in the sediment mixed layer (measured as fraction modern, Fm). Our model defines three distinct OC pools (“degradable,” “semi-labile,” and “refractory”) and assumes that 14CTOC flux to sediments is exclusively derived from surface ocean primary productivity, and hence follows a “generic” surface ocean dissolved inorganic carbon (DIC) bomb curve. Model predictions are compared to a set of 75 surface sediment samples, which span a wide geographic range and reflect diverse water column and depositional conditions, and for which sedimentation rate and mixed layer depth are well characterized. Our model overestimates the Fm value for a majority (65%) of these sites, especially at shallow water depths and for sites characterized by depleted δ13CTOC values. The model is most sensitive to sedimentation rate and mixed-layer depth. Therefore, slight changes to these parameters can lead to a match between modeled and measured Fm values at many sites. Because of model sensitivity, slight changes in sedimentation rate and mixed layer depth can allow predictions to match measured Fm at many sites. Yet, in some cases, we find that measured Fm values cannot be simulated without large and unrealistic changes to sedimentation rate and mixed layer depth. These results point to sources of pre-aged OC to surface sediments and implicate soil-derived terrestrial OC, reworked marine OC, and/or anthropogenic carbon as important components of the organic matter present in surface sediments. This approach provides a valuable framework within which to explore controls on sedimentary organic matter composition and carbon burial over a range of spatial and temporal scales.
    Description: This work was supported by NSF grants OCE-0526389 (W. Martin), OCE-0851350 and OCE-0402533 (T. Eglinton), as well as WHOI Senior Scientist Chair and Independent Study Award funds (T. Eglinton).
    Keywords: Radiocarbon ; C-14 ; Organic carbon ; Marine sediments ; Box model ; Global carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carbon Balance and Management 12 (2017): 10, doi:10.1186/s13021-017-0077-x.
    Description: Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of human activities on coastal environments and for their GHG inventories.
    Description: We acknowledge research support from ETH Zurich and the Swiss National Science Foundation.
    Keywords: Carbon stocks ; Sediments ; Oceans ; Climate change ; Exclusive Economic Zone ; Carbon inventory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2012, doi:10.1029/2003PA000927.
    Description: The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset ΔR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.
    Description: This work was supported by the Netherlands Organization for Scientific Research (NWO) and NSF grants OCE-9907129 and OCE-0137005 (Eglinton).
    Keywords: Compound-specific radiocarbon dating ; Crenarchaeol ; Reservoir age ; NE Pacific ; Saanich Inlet
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q09004, doi:10.1029/2007GC001603.
    Description: Organic matter accumulation and burial on the Namibian shelf and upper slope are spatially heterogeneous and strongly controlled by lateral transport in subsurface nepheloid layers. Much of the material deposited in depo-centers on the slope ultimately derives from the shelf. Supply of organic matter from the shelf involves selective transport of organic matter. We studied these selective transport processes by analyzing the radiocarbon content of co-occurring sediment fractions. Here we present radiocarbon data for total organic carbon as well as three tracers of surface ocean productivity (phytoplankton-derived alkenones, membrane lipids of pelagic crenarchaeota (crenarchaeol), and calcareous microfossils of planktic foraminifera) in core-top and near-surface sediment samples. The samples were collected on the Namibian margin along a shelf-slope transect (85 to 1040 m) at 24°S and from the upper slope depo-center at 25.5°S. In core-top sediments, alkenone ages gradually increased from modern to 3490 radiocarbon years with distance from shore and with water depth. Crenarchaeol, while younger than alkenones, also increased in age with distance offshore. It was concluded that the observed ages were a consequence of cross-shelf transport and associated aging of organic matter. Radiocarbon ages of preserved lipid biomarkers in sediments thus at least partially depend on the relative amount of laterally supplied, pre-aged material present in a sample, highlighting the importance of nepheloid transport for the sedimentation of organic matter over the Namibian margin.
    Description: This work was funded by NSF grant OCE- 0327405 to T.I.E. and by a Spinoza grant to J.S.S.D. from NWO.
    Keywords: Compound-specific radiocarbon dating ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 2908-2921, doi:10.1029/2017JG004285.
    Description: Information on the age dynamics of particulate organic matter (POM) in large river systems is currently sparse and represents an important knowledge gap in our understanding of the global carbon cycle. Here we examine variations in organic geochemical characteristics of suspended sediments from the Changjiang (Yangtze River) system collected between 1997 and 2010. Higher particulate organic carbon content (POC%) values were observed in the middle reach, especially after 2003, and are attributed to the increase of in situ (aquatic) primary production associated with decreased total suspended matter concentrations. Corresponding Δ14C values from depth profiles taken in 2009 and 2010 indicate spatial and temporal variations in POC sources within the basin. Two isotopic mass balance approaches were explored to quantitatively apportion different sources of Changjiang POM. Results indicate that contributions of biomass and pre‐aged soil organic matter are dominant, regardless of hydrological conditions, with soil‐derived organic carbon comprising 17–56% of POC based on a Monte Carlo three‐end‐member mixing model. In contrast, binary mixing model calculations suggest that up to 80% of POC (2009 samples only) derived from biospheric sources. The emplacement of the Three Gorges Dam and resulting trapping of sediment from the upper reach of the watershed resulted in a modification of POM 14C ages in the reservoir. With the resulting decline in sediment load and increase in the proportion of modern POC in the lower reach, these changes in POM flux and composition of the Changjiang have significant implications for downstream carbon cycle processes.
    Description: Natural Science Foundation of China Grant Numbers: 41530960, 41276081
    Description: 2019-03-15
    Keywords: Organic carbon ; Changjiang ; Radiocarbon ; Suspended particulate matter ; Three Gorges Dam
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 244 (2019): 502-521, doi:10.1016/j.gca.2018.09.034.
    Description: Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different predepositional histories. Here, we examine down-core 14C profiles of higher plant leaf waxderived fatty acids isolated from high fidelity sedimentary sequences spanning the socalled “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as 〈 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences.
    Description: Financial support was provided by a Schlanger Ocean Drilling Graduate Fellowship (NJD), an EPA STAR Graduate Fellowship (NJD), a Dutch NWO Veni grant #825.10.022 (JEV), US NSF grants #OCE-0137005 (TIE and KAH), #OCE-052626800 (TIE), #OCE-0961980 (ERMD), and #EAR-0447323 (ERMD and JRS), a Swiss SNF grant #200021_140850 (TIE), a Swedish Research Council grant #2013-05204 (MS), as well as the Stanley Watson Chair for Excellence in Oceanography at WHOI (TIE) and the WHOI Arctic Research Initiative (TIE and LG).
    Keywords: Terrestrial carbon ; Organic matter ; Radiocarbon ; Leaf waxes ; Sediment ; Residence time
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...