GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4129–4150, doi:10.1002/2015JC010728.
    Description: Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic.
    Description: We gratefully acknowledge support of this research by NSF and NASA. A NASA Earth and Space Science Fellowship supported E. Olson's graduate studies.
    Keywords: Eddy-wind interaction ; Amazon plume ; Video plankton recorder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Society for Microbiology, 2002. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 68 (2002): 1180-1191, doi:10.1128/AEM.68.3.1180-1191.2002.
    Description: Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.
    Description: This work was supported by an NSF graduate fellowship to G.R., by NASA grant NAG5-3727 and NSF grant OCE9820035 to S.W.C., and by NSF grant OCE9315895 to D.L.D. and J.B.W.
    Keywords: Marine cyanobacteria ; Prochlorococcus ; Synechococcus ; Internal transcribed spacer (ITS) ; Coexisting ecotypes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 370041 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...