GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrogen fixation  (2)
  • Coastal zone  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.
    Description: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
    Description: NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐1260574
    Description: 2018-10-04
    Keywords: Carbon cycle ; Coastal zone ; Tidal wetlands ; Estuaries ; Shelf waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell, P. D., Clayton, S., Mannino, A., & Hyde, K. High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochemical Cycles, 33(7), (2019): 826-840, doi:10.1029/2018GB006130.
    Description: Dinitrogen (N2) fixation can alleviate N limitation of primary productivity by introducing fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N2 fixation are predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of diazotrophic microbes, here we report high rates of N2 fixation from seven cruises spanning four seasons in temperate, western North Atlantic coastal waters along the North American continental shelf between Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area. Integrating average areal rates of N2 fixation during each season and for each domain in the study area, the estimated N input from N2 fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A cyanobacteria (UCYN‐A) were most often the dominant diazotrophic group expressing nifH, a gene encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted. Further, the high rates of N2 fixation and diazotroph diversity along the western North Atlantic continental shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental margins. Accounting for this substantial but previously overlooked source of new N to marine systems necessitates revisions to global marine N budgets.
    Description: Data presented in the body and supporting information of this manuscript have been deposited in the National Aeronautics and Space Administration (NASA) repository, SeaBASS and is publicly available at the following DOI address: 10.5067/SeaBASS/CLIVEC/DATA 001. This work was supported by a grant from NASA Grant Number: NNX09AE45G to M. R. M., A. M., and K. H.; a grant from NSF to P. D. C; and the Jacques S. Zaneveld and Neil and Susan Kelley Endowed Scholarships to C. S. We thank NOAA for ship time and the captain and crew of NOAA vessels Delaware II and Henry Bigelow for assistance during field sampling. Data have been submitted to SeaBASS (https://seabass.gsfc.nasa.gov/), NASA's preferred archival repository.
    Keywords: Nitrogen fixation ; Diazotrophy ; North American continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Selden, C. R., Mulholland, M. R., Bernhardt, P. W., Widner, B., Macias-Tapia, A., Ji, Q., & Jayakumar, A. Dinitrogen fixation across physico-chemical gradients of the Eastern Tropical North Pacific oxygen deficient zone. Global Biogeochemical Cycles, 33, (2019): 1187-1202, doi:10.1029/2019GB006242.
    Description: The Eastern Tropical North Pacific Ocean hosts one of the world's largest oceanic oxygen deficient zones (ODZs). Hot spots for reactive nitrogen (Nr) removal processes, ODZs generate conditions proposed to promote Nr inputs via dinitrogen (N2) fixation. In this study, we quantified N2 fixation rates by 15N tracer bioassay across oxygen, nutrient, and light gradients within and adjacent to the ODZ. Within subeuphotic oxygen‐deplete waters, N2 fixation was largely undetectable; however, addition of dissolved organic carbon stimulated N2 fixation in suboxic (〈20 μmol/kg O2) waters, suggesting that diazotroph communities are likely energy limited or carbon limited and able to fix N2 despite high ambient concentrations of dissolved inorganic nitrogen. Elevated rates (〉9 nmol N·L−1·day−1) were also observed in suboxic waters near volcanic islands where N2 fixation was quantifiable to 3,000 m. Within the overlying euphotic waters, N2 fixation rates were highest near the continent, exceeding 500 μmol N·m−2·day−1 at one third of inshore stations. These findings support the expansion of the known range of diazotrophs to deep, cold, and dissolved inorganic nitrogen‐replete waters. Additionally, this work bolsters calls for the reconsideration of ocean margins as important sources of Nr. Despite high rates at some inshore stations, regional N2 fixation appears insufficient to compensate for Nr loss locally as observed previously in the Eastern Tropical South Pacific ODZ.
    Description: We gratefully acknowledge the efforts of the captain and crew of the NOAA vessel Ronald H. Brown and the scientists who participated in the collection and analysis of the data presented here, particularly Shannon Cofield, Wei Yan, Nicole Travis, and Matt Forbes. We thank the Monterey Bay Aquatic Research Institute for the use of their pump profiling system and Margeurite Blum for her expertise in its use. Finally, we thank Bess Ward for the use of her facilities at Princeton University. This work was supported by the National Science Foundation Division of Ocean Sciences (NSF‐OCE) Grant OCE‐1356056 to M. R. M. and A. J. Data will be made available at the website (https://www.bco‐dmo.org/project/472492). The authors declare no conflicts of interest.
    Keywords: Nitrogen fixation ; Oxygen deficient zone ; Eastern tropical pacific ; Diazotroph ; Oxygen minimum zone ; Aphotic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...