GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We used the Terrestrial Ecosystem Model (TEM) to investigate how alternative input data sets of climate (temperature/precipitation), solar radiation, and soil texture affect estimates of net primary productivity (NPP) for the conterminous United States. At the continental resolution, the climates of Cramer and Leemans (C&L) and of the Vegetation/ Ecosystem Modelling and Analysis Project (VEMAP) represent cooler and drier conditions for the United States in comparison to the Legates and Willmott (L&W) climate, and cause 5.2% and 2.3% lower estimates of NPP. Solar radiation derived from C&L and given in VEMAP is 32% and 60% higher than the solar radiation data derived from Hahn cloudiness. These differences cause ∼ 8% and 10% lower NPP because of radiation-induced water stress. In comparison to the FAO/CSRC soil texture, which represents most biomes with loam soils, the soil textures are finer (more silt and clay) in the Zobler and VEMAP data sets. The use of VEMAP soil textures instead of FAO/CSRC soil textures causes ∼ 3% higher NPP because enhanced volumetric soil moisture causes higher rates of nitrogen cycling, but use of the Zobler soil textures has little effect. In general, NPP estimates of TEM are more sensitive to alternative data sets at the biome and grid cell resolutions than at the continental resolution. At all spatial resolutions, the sensitivity of NPP estimates represents the impact of uncertainty among the alternative data sets we used in this study. The reduction of uncertainty in input data sets is required to improve the spatial resolution of NPP estimates by process-based ecosystem models, and is especially important for improving assessments of the regional impacts of global change.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m−2 and 245 g N m−2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above- and below-ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long-term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures 〈20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long-term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest-derived C and its replacement by pasture-derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 399 (1999), S. 536-536 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Tian et al. reply — Our model-based analysis of the effects of interannual climate variability and increasing atmospheric CO2concentration on carbon storage in Amazonian ecosystems focused on CO2exchanges between the atmosphere and undisturbed forests and other ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna,. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Woody materials decayed more rapidly in a first order stream than in larger streams in eastern Quebec, Canada. The rate of annual mass loss (k) was highest (k=1.20) for alder wood chips in a first order stream and lowest (k=0.04) for black spruce wood chips in a ninth order stream. Decay rates for woody materials in a first order stream were inversely related to their initial lignin to nitrogen ratios. In larger streams, decay rates of woody materials were inversely related to their initial lignin concentrations. A number of quantifiable relationships were found to exist between the initial lignin and nitrogen contents of woody materials and the nitrogen dynamics of decaying wood.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 62 (1984), S. 150-155 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Beaver (Castor canadensis) influence stream ecosystems through their wood cutting and dam building activities. To quantify this influence we have used measured rates of nitrogen dynamics to construct a nitrogen budget for a section of a second order stream in eastern Québec and a beaver dam in that stream. The budget demonstrates the importance of sediment accumulations and an expanded wetted area to the annual nitrogen economy and to pathways of nitrogen cycling. Major changes after impoundment (per unit area) include a reduction in allochthonous nitrogen and an increase in nitrogen fixation by sediment microbes. Overall, the beaver-modified section accumulated ∼103 times more nitrogen than before alteration. The ecosystem implications of beaver activity suggest that current concepts of patterns and processes in running waters require modification.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2285
    Keywords: Nitrate reductase ; Nitrogen deposition ; Forests ; Nitrate ; Seedlings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Seedlings of red maple, white pine, pitch pine and red pine were fertilized with nutrient solutions containing 4 levels of nitrate or ammonium additions. These levels corresponded to approximately 0.5, 1, 2 and 4 times normal availability of nitrogen in northeastern forests. Nitrate reductase (NR) activity was assayed in roots and leaves. Red maples treated with nitrate showed much higher leaf activities and higher ratios of leaf NR activity to root NR activity than any other species. Ammonium additions to red maple and white pine appeared to inhibit NR activity in leaves. With high nitrate additions, NR activity was induced in roots and leaves of pine species, but activity in roots remained much higher than in leaves.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric C02 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 335 (1988), S. 154-156 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Remote sensing is used increasingly for the measurements required to develop landscape, regional and global assessments of the state of the biosphere. To date, most applications of remote sensing to terrestrial ecosystems have involved the estimation of foliar area and biomass, or absorbed ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Deforestation ; Amazon Basin ; Soil organic matter ; Carbon cycling ; Pastute management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The clearing of tropical forest for pasture leads to important changes in soil organic carbon (C) stocks and cycling patterns. We used the naturally occurring distribution of13C in soil organic matter (SOM) to examine the roles of forest- and pasture-derived organic matter in the carbon balance in the soils of 3- to 81-year-old pastures created following deforestation in the western Brazilian Amazon Basin state of Rondônia. Different δ13C values of C3 forest-derived C (-28‰) and C4 pasture-derived C (-13‰) allowed determination of the origin of total soil C and soil respiration. The δ13C of total soil increased steadily across ecosystems from -27.8‰ in the forest to -15.8‰ in the 81-year-old pasture and indicated a replacement of forest-derived C with pasture-derived C. The δ13C of respired CO2 increased more rapidly from -26.5‰ in the forest to -17‰ in the 3- to 13-year-old pastures and indicated a faster shift in the origin of more labile SOM. In 3-year-old pasture, soil C derived from pasture grasses made up 69% of respired C but only 17% of total soil C in the top 10 cm. Soils of pastures 5 years old and older had higher total C stocks to 30 cm than the original forest. This occurred because pasture-derived C in soil organic matter increased more rapidly than forest-derived C was lost. The increase of pasture-derived C in soils of young pastures suggests that C inputs derived from pasture grasses play a critical role in development of soil C stocks in addition to fueling microbial respiration. Management practices that promote high grass production will likely result in greater inputs of grass-derived C to pasture soils and will be important for maintaining tropical pasture soil C stocks.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...