GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ciliate  (2)
  • Cytology  (2)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Micropaleontology 138 (2018): 12-32, doi:10.1016/j.marmicro.2017.10.005.
    Description: We report systematic transmission electron microscope (TEM) observations of the cellular ultrastructure of selected, small rotalid benthic foraminifera. Nine species from different environments (intertidal mudflat, fjord, and basin) were investigated: Ammonia sp., Elphidium oceanense, Haynesina germanica, Bulimina marginata, Globobulimina sp., Nonionellina labradorica, Nonionella sp., Stainforthia fusiformis and Buliminella tenuata. All the observed specimens were fixed just after collection from their natural habitats allowing description of intact and healthy cells. Foraminiferal organelles can be divided into two broad categories: (1) organelles that are present in all eukaryotes, such as the nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, and peroxisomes; and (2) organelles observed in all foraminifera but not common in all eukaryotic cells, generally with unknown function, such as fibrillar vesicles or electron-opaque bodies. Although the organelles of the first category were observed in all the observed species, their appearance varies. For example, subcellular compartments linked to feeding and metabolism exhibited different sizes and shapes between species, likely due to differences in their diet and/or trophic mechanisms. The organelles of the second category are common in all foraminiferal species investigated and, according to the literature, are frequently present in the cytoplasm of many different species, both benthic and planktonic. This study, thus, provides a detailed overview of the major ultrastructural components in benthic foraminiferal cells from a variety of marine environments, and also highlights the need for further research to better understand the function and role of the various organelles in these fascinating organisms.
    Description: This work was supported by the Swiss National Science Foundation (grant no. 200021_149333), The Investment in Science Fund at WHOI and the French national program EC2CO-LEFE (project ForChlo). TJ was funded by the “FRESCO” project, a project supported by the Region Pays de Loire and the University of Angers.
    Keywords: Protist ; Organelles ; TEM ; Cytology ; Mudflat ; Gullmar Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 3 (2012): 341, doi:10.3389/fmicb.2012.00341.
    Description: Symbioses between Bacteria, Archaea, and Eukarya in deep-sea marine environments represent a means for eukaryotes to exploit otherwise inhospitable habitats. Such symbioses are abundant in many low-oxygen benthic marine environments, where the majority of microbial eukaryotes contain prokaryotic symbionts. Here, we present evidence suggesting that in certain oxygen-depleted marine water-column habitats, the majority of microbial eukaryotes are also associated with prokaryotic cells. Ciliates (protists) associated with bacteria were found to be the dominant eukaryotic morphotype in the haloclines of two different deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea. These findings are compared to associations between ciliates and bacteria documented from the permanently anoxic waters of the Cariaco Basin (Caribbean Sea). The dominance of ciliates exhibiting epibiotic bacteria across three different oxygen-depleted marine water column habitats suggests that such partnerships confer a fitness advantage for ciliates in these environments.
    Description: This work was funded by NSF grant OCE-0849578 and to Virginia P. Edgcomb and Joan M. Bernhard, and OCE-1061774 to Virginia P. Edgcomb and Craig Taylor (WHOI).
    Keywords: Ciliate ; SEM ; rRNA ; Anoxic ; OMZ ; Hypersaline ; Symbiosis ; CARD-FISH
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2011. This is an open-access article subject to an exclusive license agreement between the authors and Frontiers Media SA, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. The definitive version was published in Frontiers in Microbiology 2 (2011): 55, doi:10.3389/fmicb.2011.00055.
    Description: Marine micro-oxic to sulfidic environments are sites of intensive biogeochemical cycling and elemental sequestration, where prokaryotes are major driving forces mediating carbon, nitrogen, sulfur, phosphorus, and metal cycles, important from both biogeochemical and evolutionary perspectives. Associations between single-celled eukaryotes and bacteria and/or archaea are common in such habitats. Here we describe a ciliate common in the micro-oxic to anoxic, typically sulfidic, sediments of Santa Barbara Basin (CA, USA). The ciliate is 95% similar to Parduzcia orbis (18S rRNA). Transmission electron micrographs reveal clusters of at least three different endobiont types organized within membrane-bound sub-cellular regions. Catalyzed reporter deposition–fluorescent in situ hybridization and 16S rRNA clone libraries confirm the symbionts include up to two sulfate reducers (Desulfobulbaceae, Desulfobacteraceae), a methanogen (Methanobacteriales), and possibly a Bacteroidete (Cytophaga) and a Type I methanotroph, suggesting synergistic metabolisms in this environment. This case study is discussed in terms of implications to biogeochemistry, and benthic ecology.
    Description: This research was supported by grants from NSF (MCB-0604084 to Virginia P. Edgcomb and Joan M. Bernhard and MCB-0702491 to Joan M. Bernhard, Virginia P. Edgcomb, and K. L. Casciotti).
    Keywords: Ciliate ; Anoxia ; Symbiosis ; TEM ; SSU rRNA ; FISH
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-21
    Description: Dissociation of methane hydrates due to ocean warming releases methane, a powerful greenhouse gas, to the atmosphere. Dissociation of gas hydrates may have led to rapid and dramatic environmental changes in the past. Thus, understanding the impact of those events requires information about their timing and magnitudes. While the foraminiferal fossil record provides a powerful tool to understand past environmental conditions, seep-endemic foraminifera are unknown, which limits evaluation of seep-specific information. However, geographically widespread benthic foraminifera do inhabit seep sites, as documented widely in the literature, and may provide information useful to the understanding of past methane releases. In an effort to better understand how benthic foraminifera inhabit this chemosynthesis-based ecosystem, and if they faithfully record the methane emissions, we conducted a multipronged analysis of foraminifera associated with a gas hydrate emission site in the Arctic. Our goal was to simultaneously assess, in single representative calcareous benthic foraminiferal individuals, the cell biology, test stable carbon isotope ratio, and carbonate microstructure (e.g., wall thickness, survey for authigenic overgrowths), from samples collected south of Svalbard, or on Vestnesa Ridge, west of Svalbard). Serially, each specimen was scanned with microCT (computerized tomography) to assess test characteristics, then the test dissolved by acidification while capturing gas to measure stable carbon isotope ratio via continuous-flow mass spectrometry, and finally the remaining soft parts embedded and examined for cell ultrastructure with a Transmission Electron Microscope (TEM). TEM). Data from isotopic analyses, microCT scans and TEM imaging are presented here.
    Description: This project was funded by NSF (WHOI)OCE-1634469 NSF (UFL)OCE-1634248 Norwegian Research Council223259
    Keywords: Methane seep ; Arctic ; Storfjordrenna ; Vestnesa ; Lomvi ; Benthic foraminifera ; MicroCT scan ; Stable carbon isotopes of calcite ; Ultrastructure ; TEM ; Cytology
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...