GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.
    Description: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
    Description: NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐1260574
    Description: 2018-10-04
    Keywords: Carbon cycle ; Coastal zone ; Tidal wetlands ; Estuaries ; Shelf waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 4924–4944, doi:10.1002/jgrc.20331.
    Description: The overall size of the “dead zone” within the main stem of the Chesapeake Bay and its tidal tributaries is quantified by the hypoxic volume (HV), the volume of water with dissolved oxygen (DO) less than 2 mg/L. To improve estimates of HV, DO was subsampled from the output of 3-D model hindcasts at times/locations matching the set of 2004–2005 stations monitored by the Chesapeake Bay Program. The resulting station profiles were interpolated to produce bay-wide estimates of HV in a manner consistent with nonsynoptic, cruise-based estimates. Interpolations of the same stations sampled synoptically, as well as multiple other combinations of station profiles, were examined in order to quantify uncertainties associated with interpolating HV from observed profiles. The potential uncertainty in summer HV estimates resulting from profiles being collected over 2 weeks rather than synoptically averaged ∼5 km3. This is larger than that due to sampling at discrete stations and interpolating/extrapolating to the entire Chesapeake Bay (2.4 km3). As a result, sampling fewer, selected stations over a shorter time period is likely to reduce uncertainties associated with interpolating HV from observed profiles. A function was derived that when applied to a subset of 13 stations, significantly improved estimates of HV. Finally, multiple metrics for quantifying bay-wide hypoxia were examined, and cumulative hypoxic volume was determined to be particularly useful, as a result of its insensitivity to temporal errors and climate change. A final product of this analysis is a nearly three-decade time series of improved estimates of HV for Chesapeake Bay.
    Description: Funding for this study was provided by the IOOS COMT Program through NOAA grants NA10NOS0120063 and NA11NOS0120141. Additional funding was provided by NSF grant OCE-1061564.
    Keywords: Hypoxia ; Hypoxic volume ; Chesapeake Bay ; Dead zone ; Water quality ; Dissolved oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...