GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hughen, K. A., & Heaton, T. J. Updated Cariaco Basin C-14 calibration dataset from 0-60 cal kyr BP. Radiocarbon, 62(4), (2020): 1001-1043, doi:10.1017/RDC.2020.53.
    Description: We present new updates to the calendar and radiocarbon (14C) chronologies for the Cariaco Basin, Venezuela. Calendar ages were generated by tuning abrupt climate shifts in Cariaco Basin sediments to those in speleothems from Hulu Cave. After the original Cariaco-Hulu calendar age model was published, Hulu Cave δ18O records have been augmented with increased temporal resolution and a greater number of U/Th dates. These updated Hulu Cave records provide increased accuracy as well as precision in the final Cariaco calendar age model. The depth scale for the Ocean Drilling Program Site 1002D sediment core, the primary source of samples for 14C dating, has been corrected to account for missing sediment from a core break, eliminating age-depth anomalies that afflicted the earlier calendar age models. Individual 14C dates for the Cariaco Basin remain unchanged from previous papers, although detailed comparisons of the Cariaco calibration dataset to those from Hulu Cave and Lake Suigetsu suggest that the Cariaco marine reservoir age may have shifted systematically during the past. We describe these recent changes to the Cariaco datasets and provide the data in a comprehensive format that will facilitate use by the community.
    Description: K.A. Hughen was supported by funds from U.S. NSF grant #OCE-1657191, and by the Investment in Science Fund at WHOI. T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”.
    Keywords: Calibration ; Climate ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Heaton, T. J., Koehler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., & Skinner, L. C. Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62(4), (2020): 779-820, doi:10.1017/RDC.2020.68.
    Description: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.
    Description: We would like to thank Jeremy Oakley and Richard Bintanja for informative discussions during the development of this work. T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”. M Butzin is supported by the German Federal Ministry of Education and Research (BMBF), as Research for Sustainability initiative (FONA); www.fona.de through the PalMod project (grant numbers: 01LP1505B, 01LP1919A). E. Bard is supported by EQUIPEX ASTER-CEREGE and ANR CARBOTRYDH. Meetings of the IntCal Marine Focus group have been supported by Collège de France. Data are available on the PANGAEA database at doi:10.159/ANGAEA.914500.
    Keywords: Bayesian modeling ; calibration ; carbon cycle ; computer model ; marine environment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...