GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-21
    Description: The European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
    Keywords: ddc:551.6 ; EURO-CORDEX ; CORDEX ; Climate change ; Regional climate models ; Regional climate modelling
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: euro-mediterranean region ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the character- istics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high–resolution global general circulation model (INGV-SXG) with a T106 atmospheric resolution. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Using the new fully coupled CMCC model (CMCC_MED), with a T159 atmospheric resolution, we found a significant modulation of the Ocean Heat Transport (OHT) induced by the TC activity. Thus the possible changes that greenhouse induced global warming during 21st century might generate in the characteristics of the TC-induced OHT have been analyzed.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; climate variability ; air-sea interaction ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...