GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bottle, Niskin; Calculated after Luo et al. (2012); Chlorophyll a as carbon; Date/Time of event; DEPTH, water; Event label; Latitude of event; LB2008-09-12; LB2008-09-13; LB2008-09-16; LB2008-09-17a; LB2008-09-17b; Levantine Basin; Longitude of event; MAREDAT_Diazotrophs_Collection; NIS; Nitrate; Nitrogen Fixation (C2H2 Reduction); Nitrogen fixation rate, total; Nitrogen fixation rate, whole seawater; Phosphate; Salinity; Temperature, water  (1)
  • Lake Constance  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-01-30
    Keywords: Bottle, Niskin; Calculated after Luo et al. (2012); Chlorophyll a as carbon; Date/Time of event; DEPTH, water; Event label; Latitude of event; LB2008-09-12; LB2008-09-13; LB2008-09-16; LB2008-09-17a; LB2008-09-17b; Levantine Basin; Longitude of event; MAREDAT_Diazotrophs_Collection; NIS; Nitrate; Nitrogen Fixation (C2H2 Reduction); Nitrogen fixation rate, total; Nitrogen fixation rate, whole seawater; Phosphate; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 112 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 316 (1995), S. 161-172 
    ISSN: 1573-5117
    Keywords: spectral water transparency ; underwater light field ; Lake Constance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At all seasons, the underwater light field of meso-eutrophic large (480 km2) deep (mean: 100 m) Lake Constance was studied in conjunction with the assessments of vertical distributions of phytoplankton chlorophyll concentrations. Vertical profiles of scalar, downwelling and upwelling fluxes of photosynthetically available radiation, as well as fluxes of spectral irradiance between 400 and 700 nm wavelength were measured. The overall transparency of the water for PAR is highly dependent on chlorophyll concentration. However, the spectral composition of underwater light is narrowing with water depth regardless of phytoplankton biomass. Green light is transmitted best, even at extremely low chlorophyll concentrations. This is explained by the selective absorption of blue light by dissolved organic substances and red light by the water molecules. Nevertheless, significant correlations were found between vertical attenuation coefficients of downwelling spectral irradiance and chlorophyll concentrations at all wavelengths. The slopes of the regression lines were used as estimates of chlorophyll-specific spectral vertical light attenuation coefficients (K c(λ)). The proportions of total upwelling relative to total downwelling irradiance (reflectance) increased with water depth, even when phytoplankton were homogeneously distributed over the water column. Under such conditions, reflectance of monochromatic light remained constant. Lower reflectance of PAR in shallow water is explained by smaller bandwidths of upwelling relative to downwelling light near the water surface. In deeper water, by contrast, the spectra of both upwelling and downwelling irradiance are narrowed to the most penetrating components in the green spectral range. Reflectance of PAR was significantly correlated with chlorophyll concentration and varied from ∼ 1% and ∼1-% at low and high phytoplankton biomass, respectively. Over the spectrum, reflectance exhibited a maximum in the green range. Moreover, in deeper layers, a red maximum was observed which is attributed to natural fluorescence by phytoplankton chlorophyll.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...