GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biological carbon pump  (1)
  • Compound-specific 14C  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4539–4553, doi:10.1002/2016JC012549.
    Description: Biogenic matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (∼50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ∼ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.
    Description: NSF Ocean Sciences Chemical Oceanography program Grant Numbers: OCE-0425677, OCE-0851350; Ocean and Climate Change Institute of WHOI
    Description: 2017-12-01
    Keywords: Sinking particle flux ; Biological carbon pump ; Radiocarbon ; Lateral particle supply ; Sediment resuspension ; Northwest Atlantic ; Sediment trap
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 14168–14173, doi:10.1073/pnas.1307031110.
    Description: Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially- and coastally-integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface versus deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular-plant-derived lignin phenol 14C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. As river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985-2004. These findings suggest that, while partly masked by surface-carbon export, climate-change-induced mobilization of old permafrost carbon is well under way in the Arctic.
    Description: The ISSS program is supported by the Knut and Alice Wallenberg Foundation, the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council, the US National Oceanic and Atmospheric Administration, the Russian Foundation of Basic Research, the Swedish Polar Research Secretariat and the Nordic Council of Ministers (Arctic Co-Op and TRI-DEFROST programs). Ö.G. acknowledges an Academy Research Fellow grant from the Swedish Royal Academy of Sciences. Grants OCE-9907129, OCE-0137005, and OCE-0526268 from the US National Science Foundation (NSF), the Stanley Watson Chair for Excellence in Oceanography (to T.I.E.) and ETH Zürich enabled this research. J.E.V. thanks support from NWO-Rubicon (#825.10.022). B.E.v.D thanks support from the UK NERC (NE/I024798/1). X.F. thanks WHOI for a postdoctoral scholar fellowship and for postdoctoral support from ETH Zürich.
    Description: 2014-01-01
    Keywords: Fluvial mobilization ; Compound-specific 14C ; Hydrogeographic control
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...