GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Workshop held 28-29 September 2017, Cape Cod, MA
    Description: A two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances.
    Keywords: Biological pump
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siegel, D. A., Cetinic, I., Graff, J. R., Lee, C. M., Nelson, N., Perry, M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme, R., Fassbender, A. J., Nicholson, D., Omand, M. M., Robert, M., Thompson, A., Amaral, V., Behrenfeld, M., Benitez-Nelson, C., Bisson, K., Boss, E., Boyd, P. W., Brzezinski, M., Buck, K., Burd, A., Burns, S., Caprara, S., Carlson, C., Cassar, N., Close, H. H., D’Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L., Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray, D., Guidi, L., Haëntjens, N., Halsey, K., Huot, Y., Hansell, D., Jenkins, B., Karp-Boss, L., Kramer, S., Lam, P., Lee, J-M., Maas, A., Marchal, O., Marchetti, A., McDonnell, A., McNair, H., Menden-Deuer, S., Morison, F., Niebergall, A. K., Passow, U., Popp, B., Potvin, G., Resplandy, L., Roca-Martí, M., Roesler, C., Rynearson, T., Traylor, S., Santoro, A., Seraphin, K. D., Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., Van Mooy, B., Xiong, Y., Zhang, X. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elementa: Science of the Anthropocene, 9(1), (2021): 1, https://doi.org/10.1525/elementa.2020.00107.
    Description: The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
    Description: DAS, NN, KB, EF, SK, AB, AM, UP: NASA 80NSSC17K0692. MJB, EB, JG, LG, KH, LKB, JF, NH: NASA 80NSSC17K0568. KB, CBN, LR, MRM: NASA 80NSSC17K0555. CC, DH, BS: NASA 80NSSC18K0437. HC: NSF 1830016. BP, KDS: NSF 1829425. ME, KB, CD, MO: NASA 80NSSC17K0662. AF: NSF 1756932. BJ, KB, MB, SB, SC: NSF 1756442. PH, OM, JML: NSF 1829614. CL, ED, DN, MO, MJP, AT, ZN, ST: NASA 80NSSC17K0663. AM, NC, SG, WT, AN, WG: NASA 80NSSC17K0552. SMD, TR, HM, FM: NASA 80NSSC17K0716. CR, HS: NASA 80NSSC17K0700. AS, PB: NASA 80NSSC18K1431. DS, AM, KS NASA 80NSSC17K0654. BVM: NSF 1756254. XZ, DG, LG, YH: NASA 80NSSC17K0656 and 80NSSC20K0350.
    Keywords: Biological pump ; NASA field campaign ; NPP fates ; Carbon cycle ; Organic carbon export ; Export pathways
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estapa, M., Buesseler, K., Durkin, C. A., Omand, M., Benitez-Nelson, C. R., Roca-Marti, M., Breves, E., Kelly, R. P., & Pike, S. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00122, https://doi.org/10.1525/elementa.2020.00122.
    Description: Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean. Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing campaign at Ocean Station Papa in August–September 2018. We propose a new method to correct sediment trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that bypassed traps. We found generally low fluxes of sinking POC (1.38 ± 0.77 mmol C m–2 d–1 at 100 m, n = 9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally decreased between 100 and 335 m. Measured 234Th fluxes were smaller than water column 234Th fluxes by a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small (〈32 μm) and rare, large particles (〉1 mm) and with zooplankton active migrant fluxes. The fraction of net primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 ± 0.06; ratio uncertainties are propagated from measurements with n = 7–9) was consistent with prior, late summer studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic zone (T100, 0.55 ± 0.35). While both the Ez-ratio and T100 parameters varied weekly, their product, which we interpret as overall BCP efficiency, was remarkably stable (0.055 ± 0.010), suggesting a tight coupling between production and recycling at Station P.
    Description: The authors would like to acknowledge funding support from the NASA EXPORTS program (Award 80NSSC17K0662) for all sediment trap data presented here. Net primary production data collection was supported by EXPORTS (Award 80NSSC17K568) to Oregon State University. Thorium data collection was supported by EXPORTS (Award 80NSSC17K0555) to KB, CRBN, and L. Resplandy.
    Keywords: Biological carbon pump ; Ocean Station Papa ; Sediment traps ; Carbon flux ; Particle size distribution ; Swimmers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Durkin, C. A., Buesseler, K. O., Cetinic, I., Estapa, M. L., Kelly, R. P., & Omand, M. A visual tour of carbon export by sinking particles. Global Biogeochemical Cycles, 35(10), (2021): e2021GB006985, https://doi.org/10.1029/2021GB006985.
    Description: To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (〈100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
    Description: This work was supported by an NSF EAGER award to C. A. Durkin (OCE-1703664), M. L. Estapa (OCE-1703422), and M. Omand (OCE-1703336), and also by the NASA EXPORTS program (80NSSC17K0662), a NASA New Investigator award to M. L. Estapa (NNX14AM01G), the Rhode Island Endeavor Program (RIEP), NASA's PACE mission, and the Schmidt Ocean Institute.
    Keywords: Biological carbon pump ; Sediment traps ; Fecal pellets ; Aggregates ; Particles ; Salp
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...