GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binary Object; Binary Object (File Size); carbon dioxide; climate model; climate patterns; Miocene; ocean mixing; Pliocene  (1)
  • Europe  (1)
Document type
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2023-11-24
    Description: The Middle Miocene (15.99–11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high‐resolution (∼0.75°) isotope‐enabled general circulation model (ECHAM5‐wiso) with time‐specific boundary conditions to investigate changes in temperature, precipitation, and δ〈sup〉18〈/sup〉O in precipitation (δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO〈sub〉2〈/sub〉 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ〈sup〉18〈/sup〉Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low‐resolution Middle Miocene experiments of the Miocene Model Intercomparison Project (MioMIP1). However, simulated precipitation rates are 300–500 mm/yr lower in the Middle Miocene than for pre‐industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large‐scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation‐δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present‐day δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉—elevation relationships data for stable isotope paleoaltimetry studies.
    Description: Key Points: A high‐resolution isotope‐enabled general circulation model is used to explore Middle Miocene climate and precipitation δ〈sup〉18〈/sup〉O across Europe. Middle Miocene bi‐directional precipitation change consistent with herpetological fossils and account for precipitation δ〈sup〉18〈/sup〉O variations. Global Miocene climate forcing contributed a max δ〈sup〉18〈/sup〉O change of ∼2‰ over the high Alpine elevation and to ∼1‰ over low elevation.
    Description: German research fondation
    Description: Alexander‐von‐Humboldt foundation, Feodor‐Lynen‐Fellowship
    Description: Alexander‐von‐Humboldt foundation, Humboldt Research Fellowship
    Description: Scientific Steering Committee
    Description: https://mpimet.mpg.de/fileadmin/projekte/ICON-ESM/mpi-m_sla_201202.pdf
    Description: https://gitlab.awi.de/mwerner/mpi-esm-wiso
    Description: https://zenodo.org/record/6308475#.Y0gmDSFS-2w
    Keywords: ddc:550.724 ; Europe ; Middle Miocene ; climate modeling ; stable water isotopes ; temperature ; precipitation ; paleoclimate ; paleoelevation ; Alps
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: We present climate model output for various atmosphere and ocean quantities that illustrate the impact of three different types of forcing on global climate characteristics during mid-Pliocene (~3.3 - 3.0 Million years before present, Ma BP) and early to Mid-Miocene (~23-15 Ma BP): -geography, including setups for modern, mid-Pliocene, and early to Mid-Miocene -carbon dioxide, ranging from Pre-Industrial (280 parts per million by volume, ppmv) to 840 ppmv -strength of ocean mixing via enhancement of respective mixing parameters, ranging from the unperturbed state to mild (five times), intermediate (ten times), and strong (twenty-fife times) enhancement of vertical mixing. The data provided with this data publication has been employed by the authors in the manuscript "Effects of CO2 and ocean mixing on Miocene and Pliocene temperature gradients" (revised for publication in the journal Paleoceanography and Paleoclimatology, special issue "The Miocene: The Future of the Past") for a comparative study of the effects of carbon dioxide and ocean mixing on various climate characteristics. Here we provide all climate output that has been employed towards creating analyses presented in that publication. Data is provided at the resolution employed for generating analyses for the manuscript. Atmosphere model output provided at native model resolution (T31, ~3.75°x3.75° horizontally). Ocean output provided at a regular grid (the native grid of the ocean model is curvilinear with a formal resolution of 3.0°x1.8° horizontally). Sea ice cover provided at a resolution of 1.0°x1.0°. Zonal mean of ocean potential temperature over all model levels provided at a latitudinal resolution of 1°, vertically discretized on native ocean model levels (40 pressure levels of non-linear spacing). Depth of the ocean mixed layer, sea surface temperature, and total heat flux across the atmosphere ocean interface given at resolutions of 0.5°x0.5° resolution. Data at higher resolutions is provided towards retaining more details of the coastlines and of ocean gateway regions.
    Keywords: Binary Object; Binary Object (File Size); carbon dioxide; climate model; climate patterns; Miocene; ocean mixing; Pliocene
    Type: Dataset
    Format: text/tab-separated-values, 133 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...