GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Betaine lipids  (1)
  • Biogeochemistry  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1057–1060, doi:10.1038/ismej.2010.192.
    Description: In low phosphorus (P) marine systems phytoplankton replace membrane phospholipids with non-phosphorus lipids, but it is not known how rapidly this substitution occurs. Here, when cells of the model diatom Thalassiosira pseudonana were transferred from P-replete medium to P-free medium, the phospholipid content of the cells rapidly declined within 48 h from 45±0.9% to 21±4.5% of total membrane lipids; the difference was made up by non-phosphorus lipids. Conversely, when P-limited T. pseudonana were resupplied with P, cells reduced the percentage of their total membrane lipid contributed by a non-phosphorus lipid from 43±1.5% to 7.3±0.9% within 24 h, while the contribution by phospholipids rose from 2.2±0.1% to 44±3%. This dynamic phospholipid reservoir contained sufficient P to synthesize multiple haploid genomes, suggesting that phospholipid turnover could be an important P source for cells. Field observations of phytoplankton lipid content may thus reflect short-term changes in P supply and cellular physiology, rather than simply long-term adjustment to the environment.
    Description: This research was funded by NSF OCE-0646944 and OCE- 1045670 (B.V.M.), OCE-0723677 and OCE-0549794 (S.T.D.), and by the Graduate School, National Oceanography Centre, Southampton (P.M).
    Keywords: Betaine lipids ; DGCC ; Lipid substitution ; Non-phosphorus lipids ; Phosphatidylcholine ; Diatoms
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1145–1164, doi:10.1002/2015GB005141.
    Description: Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.
    Description: NOAA Climate Observation Division; National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) Grant Numbers: EF0424599, OCE-1153656, OCE-1260164; Gordon and Betty Moore Foundation Marine Microbiology Investigator
    Description: 2016-02-13
    Keywords: Primary productivity ; Microbial ecology ; Station ALOHA ; Temporal variability ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...