GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BIBS; Bridging in Biodiversity Science; Calcium carbonate, particulate; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon, total, particulate; Climate change; Climate changes; Climate driven Changes in Biodiversity of Microbiota; cyanobacteria; DATE/TIME; Day of experiment; deep chlorophyll maximum (DCM); Derived from PIC by molar conversion; Description; Difference derived from TPC and PIC; disturbance; ELTRA-800 (0.3 µm GF-75 filters (Sterlitech)); enclosure experiment; Enclosure experiment; Germany; Infralyt 50 (SAXON Junkalor GmbH), (0.3 µm GF-75 filters (Sterlitech)); Lake_Stechlin; Mesocosm label; mesocosm study; Nitrogen, total, particulate; NITROLIMIT; Oxygen/Nitrogen ratio; Peroxodisulfate oxidation method; Flow-injection analyzer; 0.3 µm GF-75 filters (Sterlitech); Phosphorus, total, particulate; sedimentation; sedimentation rates; Stickstofflimitation in Binnengewässern; TemBi; Treatment  (1)
  • Lake Stechlin  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2021-06-27
    Description: Browning caused by colored dissolved organic matter is predicted to have large effects on aquatic ecosystems. However, there is limited experimental evidence about direct and indirect effects of browning on zooplankton in complex field settings. We used a combination of an ecosystem‐scale enclosure experiment and laboratory incubations to test how prolonged browning affects physiological and life‐history traits of the water flea Daphnia longispina, a key species in lake food webs, and whether any such effects are reversible. Daphnids and water were collected from enclosures in a deep clear‐water lake, where the natural plankton community had been exposed for 10 weeks to browning or to control conditions in clear water. Daphnid abundance was much lower in the brown than in the clear enclosure. Surprisingly, however, daphnids continuously kept in brown enclosure water in the laboratory showed increased metabolic performance and survival, and also produced more offspring than daphnids kept in clear enclosure water. This outcome was related to more and higher‐quality seston in brown compared to clear water. Moreover, daphnids transferred from clear to brown water or vice versa adjusted their nucleic acid and protein contents, as indicators of physiological state, to similar levels as individuals previously exposed to the respective recipient environment, indicating immediate and reversible browning effects on metabolic performance. These results demonstrate the importance of conducting experiments in settings that capture both indirect effects (i.e., emerging from species interactions in communities) and direct effects on individuals for assessing impacts of browning and other environmental changes on lakes.
    Description: German Federal Ministry of Education and Research
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: IGB's Frontiers in Freshwater Science program
    Keywords: 551.9 ; Lake Stechlin ; dissolved organic matter
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-08
    Description: We simulated an experimental summer storm in large-volume (~1200 m3, ~16m depth) enclosures in Lake Stechlin (https://www.lake-lab.de) by mixing deeper water masses from the meta- and hypolimnion into the mixed layer (epilimnion). The mixing included the disturbance of a deep chlorophyll maximum (DCM) which was present at the same time of the experiment in Lake Stechlin and situated in the metalimnion of each enclosure during filling. Water physical variables and water chemistry was monitored for 42 days after the experimental disturbance event. Mixing disrupted the thermal stratification, increased concentrations of dissolved nutrients and CO2 and changed light conditions in the epilimnion. Mixing stimulated phytoplankton growth, thus, resulting in a bloom of Dolichospermum sp. and thereafter increased biomass of Bacillariophyceae. Subsequent, break down of both phytoplankton groups resulted in higher particulate matter sinking fluxes of particulate organic carbon (POC), total particulate nitrogen (TPN) and total particulate phosphorous (TPP) 4-5 weeks after the disturbance event. Mixing resulted in average increases in elemental downward fluxes of 9% POC, 14% total particulate Nitrogen (TPN) and 19% TPP by the end of the experiment (42 days) (n.control=4, n.mixed=4).
    Keywords: BIBS; Bridging in Biodiversity Science; Calcium carbonate, particulate; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon, total, particulate; Climate change; Climate changes; Climate driven Changes in Biodiversity of Microbiota; cyanobacteria; DATE/TIME; Day of experiment; deep chlorophyll maximum (DCM); Derived from PIC by molar conversion; Description; Difference derived from TPC and PIC; disturbance; ELTRA-800 (0.3 µm GF-75 filters (Sterlitech)); enclosure experiment; Enclosure experiment; Germany; Infralyt 50 (SAXON Junkalor GmbH), (0.3 µm GF-75 filters (Sterlitech)); Lake_Stechlin; Mesocosm label; mesocosm study; Nitrogen, total, particulate; NITROLIMIT; Oxygen/Nitrogen ratio; Peroxodisulfate oxidation method; Flow-injection analyzer; 0.3 µm GF-75 filters (Sterlitech); Phosphorus, total, particulate; sedimentation; sedimentation rates; Stickstofflimitation in Binnengewässern; TemBi; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 527 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...