GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atlantic estuaries  (1)
  • Shelf waters  (1)
  • 1
    ISSN: 1573-515X
    Keywords: Atlantic estuaries ; climate change ; climatic variability ; coastal management ; nitrate flux ; seasonal variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Streamflow-related variability in nutrient flux represents an important source of uncertainty in managing nutrient inputs to coastal ecosystems. Quantification of flux variability is of particular interest to coastal resource managers in adopting effective nutrient-reduction goals and monitoring progress towards these goals. We used historical records of streamflow and water-quality measurements for 104 river monitoring stations in an analysis of variability in annual and seasonal flux of nitrate to the Atlantic coastal zone. We present two measures of temporal flux variability: the coefficient of variation (CV) and the exceedence probability (EP) of 1.5 times the median flux. The magnitude of flux variations spans a very wide range and depends importantly upon the season of year and the climatic and land-use characteristics of the tributary watersheds. Year-to-year variations (CV) in annual mean flux range over two orders of magnitude, from 3–200% of the long-term mean flux, although variations more typically range from 20–40% of the long-term mean. The annual probability of exceeding the long-term median flux by more than 50% (EP) is less than 0.10 in most rivers, but is between 0.10 and 0.35 in 40% of the rivers. Year-to-year variability in seasonal mean flux commonly exceeds that in annual flux by a factor of 1.5 to 4. In western Gulf of Mexico coastal rivers, the year-to-year variablity in the seasonal mean flux is larger than in other regions, and is of a similar magnitude in all seasons. By contrast, in Atlantic coastal rivers, the winter and spring seasons, which account for about 70% of the annual flux, display the smallest relative variability in seasonal mean flux. We quantify the elasticity of nutrient flux to hypothetical changes in Streamflow (i.e., the percent increase in flux per percentage increase in mean discharge) to allow the approximation of flux variability from streamflow records and the estimation of the effects of future climatically-induced changes in Streamflow on nutrient flux. Flux elasticities are less than unity (median = 0.93%) at most stations, but vary widely from 0.05% to 1.59%. Elasticities above unity occur most frequently in the largest rivers and in rivers draining the arid portions of the western Gulf of Mexico Basin. Historical flux variability and elasticity generally increase with the extent of arid conditions and the quantity of nonurban land use in the watershed. We extend the analysis of flux variability to examine several case studies of highly unusual meteorological events capable of significantly elevating nitrate flux and degrading estuarine ecology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.
    Description: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
    Description: NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐1260574
    Description: 2018-10-04
    Keywords: Carbon cycle ; Coastal zone ; Tidal wetlands ; Estuaries ; Shelf waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...