GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Antarctic polynya  (1)
  • Calanus finmarchicus  (1)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 2086–2093, doi:10.1002/2016GL067937.
    Description: Phytoplankton in Antarctic coastal polynyas has a temporally short yet spatially variant growth window constrained by ice cover and day length. Using 18-year satellite measurements (1997–2015) of sea ice and chlorophyll concentrations, we assessed the synchronicity between the spring phytoplankton bloom and light availability, taking into account the ice cover and the incident solar irradiance, for 50 circum-Antarctic coastal polynyas. The synchronicity was strong (i.e., earlier ice-adjusted light onset leads to earlier bloom and vice versa) in most of the western Antarctic polynyas but weak in a majority of the eastern Antarctic polynyas. The west-east asymmetry is related to sea ice production rate: the formation of many eastern Antarctic polynyas is associated with strong katabatic wind and high sea ice production rate, leading to stronger water column mixing that could damp phytoplankton blooms and weaken the synchronicity.
    Description: This research was funded by NASA (grant NNX14AH74G) and U.S. National Science Foundation (grant PLR-1341558).
    Description: 2016-09-05
    Keywords: Phenology ; Synchronicity ; Phytoplankton ; Ice retreat ; Antarctic polynya
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiebe, P., Baumgartner, M., Copley, N., Lawson, G., Davis, C., Ji, R., & Greene, C. Does predation control the diapausing stock of Calanus finmarchicus in the Gulf of Maine? Progress In Oceanography, 206, (2022): 102861, https://doi.org/10.1016/j.pocean.2022.102861.
    Description: The variability of zooplankton populations is controlled by external and internal forcing, with the former being principally large-scale changes in circulation, and the latter being driven by in situ growth, competition, and predation. Assessing the relative importance of these forcings is challenging and requires analyses of multifaceted observational data. As part of the U.S. GLOBEC Georges Bank program, a series of cruises were conducted in fall 1997, 1998, and 1999 to survey diapausing populations of Calanus finmarchicus and their predators in Wilkinson, Jordan, and Georges Basins of the Gulf of Maine. Station and underway sampling were conducted using net (1 m2 MOCNESS) and bioacoustic (BIOMAPER-II) systems, respectively, to acquire vertically stratified data for zooplankton biomass, taxonomic, size, and life-stage composition, together with associated environmental data. The results show that the autumn diapausing C. finmarchicus abundance was much lower in 1998 than in 1997 or 1999, even though the overall zooplankton biomass levels were comparable between the three years. The size frequency distribution of the diapausing individuals had a bi-modal pattern in 1997 and 1999, but a single mode in 1998, indicating the demise of an early cohort of the diapausing stock. The relative biomass and computed energy demand of potential invertebrate predators (euphausiids, decapods, medusae, and siphonophores) was found to be higher in 1998 and could account for the missing C. finmarchicus cohort. Evidence collected from this study supports the hypothesis that local predation has the potential to control the diapausing stock of C. finmarchicus in the Gulf of Maine.
    Description: RJ received support from the Northeast US Shelf Long Term Ecological Research (NES-LTER) project (NSF OCE-1655686) and the US MBON Gulf of Maine project to NERACOOS (NOPP award NA19NOS0120197 and BOEMUMaine Cooperative Agreement M19AC00022) for analyzing the size data and working on the manuscript. Research support was provided by the US GLOBEC Georges Bank Program through the CILER Cooperative Agreement NA-67RJO148 (NOAA Coastal Ocean Program).
    Keywords: Gulf of Maine ; Calanus finmarchicus ; Fall abundance variability ; Calanus C5 size variability ; Predation control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...