GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 142 (1985), S. 403-408 
    ISSN: 1432-072X
    Schlagwort(e): Nitrate assimilation ; Nitrate dissimilation ; Ammonium regulation ; Rhodopseudomonas capsulata
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract (1) The disappearance of nitrate from suspensions of intact, washed cells of Rhodopseudomonas capsulata strain N22DNAR+ was measured with an ion selective electrode. In samples taken from phototrophic cultures grown to late exponential phase, nitrate disappearance was partially inhibited by light but was not affected by the presence of ammonium. Nitrate disappearance from samples from low density cultures in the early exponential phase of growth was first inhibited and later stimulated by light. In these cells ammonium ions inhibited the light-dependent but not the dark disappearance of nitrate. It is concluded that cells in the early exponential phase of growth possess both an ammonium-sensitive, assimilatory pathway for nitrate reduction (NRI) and an ammonium-insensitive pathway for nitrate reduction (NRII) which is linked to respiratory electron flow and energy conservation. In cells harvested in late exponential phase only the respiratory pathway for pitrate reduction is detectable. (2) Nitrate reduction, as judged by the oxidation of reduced methyl viologen by anaerobic cell suspensions, was measured at high rates in those strains of R. capsulata (AD2, BK5, N22DNAR+) which are believed to possess NRII activity but not in those strains (Kbl, R3, N22) which only manifest the ammonium-sensitive NRI pathway. On this basis we have used nitrate-dependent oxidation of reduced methyl viologen as a diagnostic test for the nitrate reductase of NRII in cells harvested from cultures of R. capsulata strain AD2. The activity was readily detectable in cells from cultures grown aerobically in the dark with ammonium nitrate as source of nitrogen. When the oxygen supply to the culture was withdrawn, the level of methyl viologen-dependent nitrate reductase increased considerably and nitrite accumulated in the culture medium. Upon reconnecting the oxygen supply, methyl viologen-dependent nitrate reductase activity decreased and the reduction of nitrate to nitrite in the culture was inhibited. It is concluded that the respiratory nitrate reductase activity is regulated by the availability of electron transport pathways that are linked to the generation of a proton electrochemical gradient.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...