GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: Aminoacylase ; sodium dodecyl sulfate ; inactivation ; conformational change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract During denaturation by sodium dodecyl sulfate (SDS), aminoacylase shows a rapid decrease in activity with increasing concentration of the detergent to reach complete inactivation at 1.0 mM SDS. The denatured minus native-enzyme difference spectrum showed two negative peaks at 287 and 295 nm. With the increase of concentration of SDS, both negative peaks increased in magnitude to reach maximal values at 5.0 mM SDS. The fluorescence emission intensity of the enzyme decreased, whereas there was no red shift of emission maximum in SDS solutions of increasing concentration. In the SDS concentration regions employed in the present study, no marked changes of secondary structure of the enzyme have been observed by following the changes in far-ultraviolet CD spectra. The inactivation of this enzyme has been followed and compared with the unfolding observed during denaturation in SDS solutions. A marked inactivation is already evident at low SDS concentration before significant conformational changes can be detected by ultraviolet absorbance and fluorescence changes. The inactivation rate constants of free enzyme and substrate-enzyme complex were determined by the kinetics method of the substrate reaction in the presence of inactivator previously described by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. It was found that substrate protects against inactivation and at the same SDS concentrations, the inactivation rate of the free enzyme is much higher than the unfolding rate. The above results show that the active sites of metal enzyme containing Zn2+ are also situated in a limited and flexible region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.
    Description: Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.
    Description: Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee.
    Keywords: Harmful algal blooms ; HABs ; Genome sequence ; Ecogenomics ; Metaproteomics ; Eutrophication ; Aureococcus anophagefferens
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...