GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Internal gravity waves  (2)
  • Satellite observations  (2)
  • Altimetry  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 281-297, doi:10.1175/JTECH-D-17-0076.1.
    Description: The wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.
    Description: The authors would like to acknowledge the funding sources: the SWOT mission (JW, LF, DM); NASA Projects NNX13AE32G, NNX16AH76G, and NNX17AH54G (TF); and NNX16AH66G and NNX17AH33G (BQ). AF and MF were funded by the Keck Institute for Space Studies (which is generously supported by the W. M. Keck Foundation) through the project Science-driven Autonomous and Heterogeneous Robotic Networks: A Vision for Future Ocean Observations (http://kiss.caltech.edu/?techdev/seafloor/seafloor.html).
    Description: 2018-08-07
    Keywords: Altimetry ; In situ oceanic observations ; Profilers, oceanic ; Satellite observations ; Sensitivity studies ; Planning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 2088-2109, doi:10.1029/2018JC014583.
    Description: As observations and models improve their resolution of oceanic motions at ever finer horizontal scales, interest has grown in characterizing the transition from the geostrophically balanced flows that dominate at large‐scale to submesoscale turbulence and waves that dominate at small scales. In this study we examine the mesoscale‐to‐submesoscale (100 to 10 km) transition in an eastern boundary current, the southern California Current System (CCS), using repeated acoustic Doppler current profiler transects, sea surface height from high‐resolution nadir altimetry and output from a (1/48)° global model simulation. In the CCS, the submesoscale is as energetic as in western boundary current regions, but the mesoscale is much weaker, and as a result the transition lacks the change in kinetic energy (KE) spectral slope observed for western boundary currents. Helmholtz and vortex‐wave decompositions of the KE spectra are used to identify balanced and unbalanced contributions. At horizontal scales greater than 70 km, we find that observed KE is dominated by balanced geostrophic motions. At scales from 40 to 10 km, unbalanced contributions such as inertia‐gravity waves contribute as much as balanced motions. The model KE transition occurs at longer scales, around 125 km. The altimeter spectra are consistent with acoustic Doppler current profiler/model spectra at scales longer than 70/125 km, respectively. Observed seasonality is weak. Taken together, our results suggest that geostrophic velocities can be diagnosed from sea surface height on scales larger than about 70 km in the southern CCS.
    Description: This research was funded by NASA (NNX13AE44G, NNX13AE85G, NNX16AH67G, NNX16AO5OH, and NNX17AH53G). We thank Sung Yong Kim for providing the high‐frequency radar spectral estimates and the two anonymous reviewers for providing useful comments and suggestions that greatly improved the manuscript. High‐frequency ALES data for Jason‐1 and Jason‐2 altimeters are available upon request (https://openadb.dgfi.tum.de/en/contact/ALES). Both AltiKa and Sentinel‐3 altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS; http://www.marine.copernicus.eu). D. M. worked on the modeling component of this study at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). High‐end computing resources were provided by the NASA Advanced Supercomputing (NAS) Division of the Ames Research Center. The LLC output can be obtained from the ECCO project (ftp://ecco.jpl.nasa.gov/ECCO2/LLC4320/). The ADCP data are available at the Joint Archive for Shipboard ADCP data (JASADCP; http://ilikai.soest.hawaii.edu/sadcp).
    Description: 2019-08-21
    Keywords: Mesoscale ; Submesoscale ; Internal gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 58(3), (2020): e2019RG000672, doi:10.1029/2019RG000672.
    Description: Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
    Description: The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors acknowledge support from the National Aeronautics and Space Administration under Grants 80NSSC17K0565, 80NSSC170567, 80NSSC17K0566, 80NSSC17K0564, and NNX17AB27G. A. A. acknowledges support under GRACE/GRACEFO Science Team Grant (NNH15ZDA001N‐GRACE). T. W. acknowledges support by the National Aeronautics and Space Administration (NASA) under the New (Early Career) Investigator Program in Earth Science (Grant: 80NSSC18K0743). C. G. P was supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution.
    Keywords: Sea level ; Satellite observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 7803–7821, doi:10.1002/2017JC013009.
    Description: Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (〉0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
    Description: National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Grant Number: NNX16AO23H Margaret and Herman Sokol Faculty; Office of Naval Research (ONR) Grant Numbers: N00014-15-1-2288 , N00014-11-1-0487; National Science Foundation (NSF) Grant Numbers: OCE-0968783 , OCE-1351837 , NNX13AE32G , NNX16AH76G , NNX13AE46 , NNX13AD95Q , NNX16AH79G
    Description: 2018-04-10
    Keywords: Internal gravity waves ; Internal tides ; Sea surface height variability ; High-resolution ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...