GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Arctic Ocean; Carbon, inorganic, dissolved; Carbonate chemistry; Carbon dioxide; Chamber for gas sampling; CHAMGAS; Conductivity sensor Cond 315i, WTW GmbH, Germany; Coulometry; DATE/TIME; DEPTH, water; Equilibrator, 3M, Liqui-Cel [G542, S/N: 132462]; followed by Infrared gas analyzer, LI-COR Inc., LI-8100A; Event label; LATITUDE; lead; LONGITUDE; Mass spectrometer, Finnigan, Delta-S; melt pond; melt water; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; oxygen isotope; Polarstern; PS122/5; PS122/5_59-200; PS122/5_59-202; PS122/5_59-203; PS122/5_59-207; PS122/5_59-208; PS122/5_59-209; PS122/5_59-210; PS122/5_59-211; PS122/5_59-212; PS122/5_59-213; PS122/5_59-214; PS122/5_59-215; PS122/5_59-343; PS122/5_60-130; PS122/5_60-146; PS122/5_60-61; PS122/5_62-33; Salinity; Sample type; Site; Temperature, water; Titration; Water sample; WS; δ18O, water  (1)
  • Chloroiodomethane; DATE/TIME; Day of experiment; Dibromochloromethane; Dibromomethane; Diiodomethane; Dimethyl sulfide, dissolved; Dimethylsulfoniopropionate; Dimethylsulfoniopropionate, particulate; Iodoethane; Iodomethane; KOSMOS_2011_Bergen; MESO; Mesocosm experiment; Mesocosm label; Raunefjord; SOPRAN; Surface Ocean Processes in the Anthropocene; Treatment; Tribromomethane  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Webb, Alison L; Malin, Gill; Hopkins, Frances E; Ho, Kai Lam; Riebesell, Ulf; Schulz, Kai Georg; Larsen, Aud; Liss, Peter S (2016): Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environmental Chemistry, 13(2), 314, https://doi.org/10.1071/EN14268
    Publication Date: 2024-04-27
    Description: The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 µatm pCO2, but DMSP production normalised to cell volume was 12 % lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32 % respectively at pCO2 up to 3000 µatm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMS and dissolved DMSP at higher pCO2. DMS and DMSP production differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.
    Keywords: Chloroiodomethane; DATE/TIME; Day of experiment; Dibromochloromethane; Dibromomethane; Diiodomethane; Dimethyl sulfide, dissolved; Dimethylsulfoniopropionate; Dimethylsulfoniopropionate, particulate; Iodoethane; Iodomethane; KOSMOS_2011_Bergen; MESO; Mesocosm experiment; Mesocosm label; Raunefjord; SOPRAN; Surface Ocean Processes in the Anthropocene; Treatment; Tribromomethane
    Type: Dataset
    Format: text/tab-separated-values, 2590 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-24
    Description: Melt ponds water sampling for biogeochemical parameters such as dissolved inorganic carbon (DIC), total alkalinity (TA), oxygen isotopes were examined from August to September 2020. To obtain discrete water samples from the melt ponds and leads, we checked the vertical structure and depth of the meltwater layer from the same hole used for the RINKO Profiler by attaching a conductivity sensor (Cond 315i, WTW GmbH, Germany) to a 2-m-long ruler and inserting the ruler into the lead water until the salinity measured with the Cond 315i increased at the meltwater–seawater interface (Nomura et al., 2024) . Water was pumped up with a peristaltic pump through a 2-m-long PTFE tube (L/S Pump Tubing, Masterflex, USA) at depths corresponding to meltwater (surface), the interface between meltwater and seawater (interface), and seawater (bottom). Salinity was measured at each depth by attaching a Cond 315i conductivity sensor to the bottom of the ruler. The tube intake was likewise attached to the bottom of the ruler. Seawater was subsampled into a 250-mL glass vial (Duran Co., Ltd., Germany) for measurement of dissolved inorganic carbon (DIC) and total alkalinity (TA) and a 50-mL glass, screw-cap, narrow-neck vial (VWR international LLC, Germany) for measurement of the oxygen isotopic ratio (δ18O) of the water. Immediately after subsampling for measurement of DIC and TA, a 6.0% (wt.) mercuric chloride (HgCl2) solution (100 µL) was added to stop biological activity. Samples for DIC and TA were stored at +4°C on the R/V Polarstern. Samples for δ18O were stored at room temperature (20°C). During the discrete water sampling, the CO2 concentration in the water column was measured directly on site by passing the water through an equilibrator Liqui-Cel® (G542, S/N: 132462, 3M Company, USA) connected to an infrared gas analyzer (LI-8100A, LI-COR Inc., USA). The analyzer was calibrated with standard gases containing 0.0, 299.3, and 501.3 ppm CO2 before MOSAiC Leg 5. RMS (root means square) noise at 370 ppm with 1 sec signal averaging is 〈1 ppm (https://www.licor.com/env/products/soil-flux/LI-8100a). The equilibrator was connected in the loop for water sampling (vide supra), and a 2-m-long ruler was inserted into the water and kept at that depth until the CO2 was equilibrated with air (about 1 minute) by monitoring the CO2 values. The CO2 concentration was measured at each depth (i.e., surface, interface, and bottom). At the ROV lead sites, vertical CO2 measurements were made every 0.05 m for detailed profiles. The DIC of water was determined by coulometry (Johnson et al., 1985; Johnson, 1992) using a home-made CO2 extraction system (Ono et al., 1998) and a coulometer (CM5012, UIC, Inc., Binghamton, NY, USA). The TA of water was determined by titration (Dickson et al., 2007) using a TA analyzer (ATT-05, Kimoto Electric Co., Ltd., Japan). Both DIC and TA measurements were calibrated with reference seawater materials (Batch AR, AU, and AV; KANSO Technos Co., Ltd., Osaka, Japan) traceable to the Certified Reference Material distributed by Prof. A. G. Dickson (Scripps Institution of Oceanography, La Jolla, CA, USA). Oxygen isotope analyses were carried out at the ISOLAB Facility at AWI Potsdam (hdl:10013/sensor.ddc92f54-4c63-492d-81c7-696260694001) with mass spectrometers (DELTA-S Finnigan MAT, USA): hdl:10013/sensor.af148dea-fe65-4c87-9744-50dc4c81f7c9 and hdl:10013/sensor.62e86761-9fae-4f12-9c10-9b245028ea4c employing the equilibration method (details in Meyer et al., 2000). δ18O values were given in per mil (‰) vs. Vienna standard mean ocean water (V-SMOW) as the standard.
    Keywords: Alkalinity, total; Arctic Ocean; Carbon, inorganic, dissolved; Carbonate chemistry; Carbon dioxide; Chamber for gas sampling; CHAMGAS; Conductivity sensor Cond 315i, WTW GmbH, Germany; Coulometry; DATE/TIME; DEPTH, water; Equilibrator, 3M, Liqui-Cel [G542, S/N: 132462]; followed by Infrared gas analyzer, LI-COR Inc., LI-8100A; Event label; LATITUDE; lead; LONGITUDE; Mass spectrometer, Finnigan, Delta-S; melt pond; melt water; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; oxygen isotope; Polarstern; PS122/5; PS122/5_59-200; PS122/5_59-202; PS122/5_59-203; PS122/5_59-207; PS122/5_59-208; PS122/5_59-209; PS122/5_59-210; PS122/5_59-211; PS122/5_59-212; PS122/5_59-213; PS122/5_59-214; PS122/5_59-215; PS122/5_59-343; PS122/5_60-130; PS122/5_60-146; PS122/5_60-61; PS122/5_62-33; Salinity; Sample type; Site; Temperature, water; Titration; Water sample; WS; δ18O, water
    Type: Dataset
    Format: text/tab-separated-values, 204 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...