GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyta; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Duration, number of days; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Halimeda opuntia; Identification; Image number/name; Laboratory experiment; Length; Macroalgae; Needles; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Plantae; Potentiometric; Potentiometric titration; Salinity; Single species; South Pacific; Species; Temperature, water; Treatment; Tropical; Width  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wizemann, Andre; Meyer, Friedrich Wilhelm; Hofmann, Laurie C; Wild, Christian; Westphal, Hildegard (2015): Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs, https://doi.org/10.1007/s00338-015-1288-9
    Publication Date: 2024-03-15
    Description: Decreases in seawater pH and carbonate saturation state (Omega) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimedaopuntia specimens that had been exposed to artificially elevated seawater pCO2 of 650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was 22 %/µm**2 higher and needle crystal dimensions 14 % longer. However, those needles were 42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35-173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated (Omega 〈 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of atmospheric CO2 within Halimeda-derived sediments.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyta; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Duration, number of days; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Halimeda opuntia; Identification; Image number/name; Laboratory experiment; Length; Macroalgae; Needles; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Plantae; Potentiometric; Potentiometric titration; Salinity; Single species; South Pacific; Species; Temperature, water; Treatment; Tropical; Width
    Type: Dataset
    Format: text/tab-separated-values, 6772 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...