GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Coulometric titration; D366_E1; D366_E2; D366_E3; D366_E4; D366_E5; Dimethyl sulfide; Dimethylsulfoniopropionate; Entire community; Event label; EXP; Experiment; Flag; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); High nucleic acid bacteria; Identification; Laboratory experiment; Low nucleic acid bacteria; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Potentiometric titration; Salinity; Silicate; Temperate; Temperature, water; Time in hours; Treatment; Type; UKOA; United Kingdom Ocean Acidification research programme  (1)
  • BIOACID; Biological Impacts of Ocean Acidification; Chloroiodomethane; DATE/TIME; Day of experiment; Dibromochloromethane; Dibromomethane; Diiodomethane; Dimethyl sulfide, dissolved; Iodoethane; Iodomethane; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; SOPRAN; Surface Ocean Processes in the Anthropocene; Treatment; Tribromomethane  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Webb, Alison L; Leedham-Elvidge, Emma; Hughes, Claire; Hopkins, Frances E; Malin, Gill; Bach, Lennart Thomas; Schulz, Kai Georg; Crawfurd, Katharine J; Brussaard, Corina P D; Stuhr, Annegret; Riebesell, Ulf; Liss, Peter S (2016): Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community. Biogeosciences, 13(15), 4595-4613, https://doi.org/10.5194/bg-13-4595-2016
    Publication Date: 2024-03-06
    Description: The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Chloroiodomethane; DATE/TIME; Day of experiment; Dibromochloromethane; Dibromomethane; Diiodomethane; Dimethyl sulfide, dissolved; Iodoethane; Iodomethane; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; SOPRAN; Surface Ocean Processes in the Anthropocene; Treatment; Tribromomethane
    Type: Dataset
    Format: text/tab-separated-values, 1911 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 µatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28-223%) at 550 µatm, 153% (56-295%) at 750 µatm and 225% (79-413%) at 1000 µatm), and decreases in DMSP concentrations (28% (18-40%) at 550 µatm, 44% (18-64%) at 750 µatm and 52% (24-72%) at 1000 µatm). Significant decreases in DMSP synthesis rate constants (µDMSP /d) and DMSP production rates (nmol/d) were observed in two experiments (7-90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Coulometric titration; D366_E1; D366_E2; D366_E3; D366_E4; D366_E5; Dimethyl sulfide; Dimethylsulfoniopropionate; Entire community; Event label; EXP; Experiment; Flag; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); High nucleic acid bacteria; Identification; Laboratory experiment; Low nucleic acid bacteria; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Potentiometric titration; Salinity; Silicate; Temperate; Temperature, water; Time in hours; Treatment; Type; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 13439 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...