GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Mollusca; Mytilus edulis; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Patinopecten yessoensis; pH; pH, standard error; Potentiometric titration; Registration number of species; Salinity; Salinity, standard error; Single species; Sodium/Calcium ratio; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Type; Uniform resource locator/link to reference; Xinghai_Bay; Zhangzi_Island  (1)
  • Alzey_Fm_Ai; Arctica islandica, growth increment width; Growth index; Number of years  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-02-12
    Keywords: Alzey_Fm_Ai; Arctica islandica, growth increment width; Growth index; Number of years
    Type: Dataset
    Format: text/tab-separated-values, 231 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng (2017): Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation. Journal of Experimental Marine Biology and Ecology, 486, 148-154, https://doi.org/10.1016/j.jembe.2016.10.009
    Publication Date: 2024-03-15
    Description: Ocean acidification and warming are predicted to affect the ability of marine bivalves to build their shells, but little is known about the underlying mechanisms. Shell formation is an extremely complex process requiring a detailed understanding of biomineralization processes. Sodium incorporation into the shells would increase if bivalves rely on the exchange of Na+/H+ to maintain homeostasis for shell formation, thereby shedding new light on the acid-base and ionic regulation at the calcifying front. Here, we investigated the combined effects of seawater pH (8.1, 7.7 and 7.4) and temperature (16 and 22 °C) on the growth and sodium composition of the shells of the blue mussel, Mytilus edulis, and the Yesso scallop, Patinopecten yessoensis. Exposure of M. edulis to low pH (7.7 and 7.4) caused a significant decrease of shell formation, whereas a 6 °C warming significantly depressed the rate of shell growth in P. yessoensis. On the other hand, while the amount of Na incorporated into the shells of P. yessoensis did not increase in acidified seawater, an increase of Na/Cashell with decreasing pH was observed in M. edulis, the latter agreeing well with the aforementioned hypothesis. Moreover, a combined analysis of the shell growth and sodium content provides a more detailed understanding of shell formation processes. Under acidified conditions, mussels may maintain more alkaline conditions favorable for calcification, but a significant decrease of shell formation indicates that the mineralization processes are impaired. The opposite occurs in scallops; virtually unaffected shell growth implies that shell mineralization functions well. Finding of the present study may pave the way for deciphering the mechanisms underlying the impacts of ocean acidification and warming on bivalve shell formation.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Mollusca; Mytilus edulis; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Patinopecten yessoensis; pH; pH, standard error; Potentiometric titration; Registration number of species; Salinity; Salinity, standard error; Single species; Sodium/Calcium ratio; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Type; Uniform resource locator/link to reference; Xinghai_Bay; Zhangzi_Island
    Type: Dataset
    Format: text/tab-separated-values, 348 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...