GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon per cell; Carbon per cell, standard deviation; Cell density; Cell density, standard deviation; Chlorophyll a; Chlorophyll a per cell; Chromista; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Heterosigma akashiwo; Hydrogen peroxide; Hydrogen peroxide per cell; Identification; Laboratory experiment; Laboratory strains; Nitrogen per cell; Nitrogen per cell, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Primary production of carbon per chlorophyll a; Registration number of species; Salinity; Sample ID; Single species; Species; Spectrophotometric; Temperature, water; Treatment; Type; Uniform resource locator/link to reference  (1)
  • Ecogenomics  (1)
Document type
Keywords
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon per cell; Carbon per cell, standard deviation; Cell density; Cell density, standard deviation; Chlorophyll a; Chlorophyll a per cell; Chromista; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Heterosigma akashiwo; Hydrogen peroxide; Hydrogen peroxide per cell; Identification; Laboratory experiment; Laboratory strains; Nitrogen per cell; Nitrogen per cell, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Primary production of carbon per chlorophyll a; Registration number of species; Salinity; Sample ID; Single species; Species; Spectrophotometric; Temperature, water; Treatment; Type; Uniform resource locator/link to reference  (1)
  • Ecogenomics  (1)
  • Phosphorus  (3)
  • Aureococcus anophagefferens  (2)
  • Cyanobacteria  (2)
  • +
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hennon, Gwenn M M; Williamson, Olivia M; Hernández Limón, María D; Haley, Sheean T; Dyhrman, Sonya T (2019): Non-linear Physiology and Gene Expression Responses of Harmful Alga Heterosigma akashiwo to Rising CO2. Protist, 170(1), 38-51, https://doi.org/10.1016/j.protis.2018.10.002
    Publication Date: 2024-05-22
    Description: Heterosigma akashiwo is a raphidophyte known for forming ichthyotoxic blooms. In order to predict the potential impacts of rising CO2 on H. akashiwo it is necessary to understand the factors influencing growth rates over a range of CO2 concentrations. Here we examined the physiology and gene expression response of H. akashiwo to concentrations from 200 to 1000 ppm CO2. Growth rate data were combined from this and previous studies and fit with a CO2 limitation-inhibition model that revealed an apparent growth optimum around 600–800 ppm CO2. Physiological changes included a significant increase in C:N ratio at 800 ppm CO2 and a significant decrease in hydrogen peroxide concentration at 1000 ppm. Whole transcriptome sequencing of H. akashiwo revealed sharp distinctions in metabolic pathway gene expression between 600 and 800 ppm CO2. Hierarchical clustering by co-expression identified groups of genes with significant correlations to CO2 and growth rate. Genes with significant differential expression with CO2 included carbon concentrating mechanism genes such as beta-carbonic anhydrases and a bicarbonate transporter, which may underpin shifts in physiology. Genes involved in cell motility were significantly changed by both elevated CO2 and growth rate, suggesting that future ocean conditions could modify swimming behavior in this species.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon per cell; Carbon per cell, standard deviation; Cell density; Cell density, standard deviation; Chlorophyll a; Chlorophyll a per cell; Chromista; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Heterosigma akashiwo; Hydrogen peroxide; Hydrogen peroxide per cell; Identification; Laboratory experiment; Laboratory strains; Nitrogen per cell; Nitrogen per cell, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Primary production of carbon per chlorophyll a; Registration number of species; Salinity; Sample ID; Single species; Species; Spectrophotometric; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 611 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.
    Description: Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.
    Description: Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee.
    Keywords: Harmful algal blooms ; HABs ; Genome sequence ; Ecogenomics ; Metaproteomics ; Eutrophication ; Aureococcus anophagefferens
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...