GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • aerosols; Arctic aerosol; Arctic Ocean; CCNC; cloud condensation nuclei; Cloud Condensation Nuclei Counter; Condensation particle counter; CPC; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Particle number; Polarstern; PS122/1; PS122/1_1-83; PS122/2; PS122/2_14-33; PS122/3; PS122/3_28-29  (5)
  • Aerosol Observing System; AIRS; Air sampler; AOS; Arctic Ocean; carbon monoxide; Carbon monoxide, dry-air mole fraction; central Arctic Ocean; DATE/TIME; LATITUDE; Location; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Polarstern; PS122/1; PS122/1_1-342; PS122/1_1-75; PS122/1_4-38; PS122/2; PS122/2_14-15; PS122/2_14-256; PS122/2_20-118; PS122/2_21-131; PS122/2_22-100; PS122/2_23-112; PS122/2_24-91; PS122/3; PS122/3_28-38; PS122/3_29-86; PS122/3_31-97; PS122/3_32-99; PS122/3_34-100; PS122/3_34-99; PS122/3_35-123; PS122/3_36-92; PS122/3_37-163; PS122/3_39-138; PS122/3_40-54; PS122/3_41-21; PS122/3_42-51; PS122/4; PS122/4_43-127; PS122/4_43-30; PS122/4_44-145; PS122/4_45-4; PS122/4_47-106; PS122/4_47-107; PS122/4_50-7; PS122/5; PS122/5_58-29; PS122/5_59-477; PS122/5_60-221; PS122/5_61-43; Snow sampler metal; SSM; TGM; Trace gas monitor  (1)
  • aerosol; AETH; Aethalometer; Aethalometer, AE33, Magee Scientific; Arctic aerosol; Arctic Ocean; black carbon; Black carbon, equivalent; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Polarstern; PS122/1; PS122/1_1-82; PS122/2; PS122/2_14-11; PS122/3; PS122/3_28-27; PS122/4; PS122/4_43-21; PS122/5; PS122/5_58-18  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-07-01
    Description: This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).
    Keywords: aerosols; Arctic aerosol; Arctic Ocean; CCNC; cloud condensation nuclei; Cloud Condensation Nuclei Counter; Condensation particle counter; CPC; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Particle number; Polarstern; PS122/1; PS122/1_1-83; PS122/2; PS122/2_14-33; PS122/3; PS122/3_28-29
    Type: Dataset
    Format: text/tab-separated-values, 94370 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-01
    Description: This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).
    Keywords: aerosols; Arctic aerosol; Arctic Ocean; CCNC; cloud condensation nuclei; Cloud Condensation Nuclei Counter; Condensation particle counter; CPC; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Particle number; Polarstern; PS122/1; PS122/1_1-83; PS122/2; PS122/2_14-33; PS122/3; PS122/3_28-29
    Type: Dataset
    Format: text/tab-separated-values, 105453 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-01
    Description: This dataset contains equivalent black carbon (eBC) concentrations, averaged to 10 min time resolution, measured during the year-long MOSAiC expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using a commercial aethalometer (model AE33, Magee Scientific, Berkeley, USA). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively. The inlet flow, of 2 liters per minute, was verified biweekly. The dual spot technology of the instrument allowed for a real-time compensation of what is known as the loading effect (Drinovec et al., 2015). Optical absorption was measured at 7 different wavelengths simultaneously, with a 1 second time resolution. We used the absorption at 880 nm (channel 6) to derive eBC, using a mass absorption cross-section value of 7.77 m2g-1. The switching valve caused concentration spikes to be observed at the full hours, hence data points within ± 2 minutes of the full hours are removed. The dataset was averaged to 1 minute time resolution (original time resolution is 1 second) to reduce the largest part of the instrument's noise, and outliers of more than 3 times the standard deviation of an hourly moving window were removed from the 1 minute averaged dataset. During some times for which the switching valve mechanism was on, varying patterns of increased mean and standard deviation of the measurements were observed, due to a pressure drop in the inlet lines. We corrected it by taking the arithmetic means of the data points during interstitial inlet measurements and the two adjacent hours of total inlet measurements, subtracting these two values and adding this difference to the data points of the interstitial inlet measurements. Finally, the data were averaged to 10 minutes time resolution. Based on a visual inspection of the entire dataset, we removed periods of strong noise and intense negative spikes. These artifacts may have emerged from the averaging of the initially noisy 1 second time resolution dataset and/or from the dual spot compensation which may lead to the presence of strong negative outliers right after a large positive outlier. Data collected between June 3rd and June 9th were discarded as Polarstern was within Svalbard's 12 nautical miles zone. The aethalometer dataset was further cleaned for disturbing pollution emissions from local research activities (e.g., exhaust by Polarstern's engine and vents, skidoos, on-ice diesel generators) using a preexisting pollution mask developed by Beck et al. (2022a), where a multi-step pollution detection algorithm was applied on the interstitial CPC dataset at 1 minute time resolution (Beck et al., 2022b). This pollution mask was converted to 10 minutes time resolution by setting a condition where, if more than 1 data point is polluted in a 10 minutes moving window, the entire 10 minutes period is defined as polluted. The resulting flag “Flag_pollution” should be equal to 0 to retain un-polluted data points only.
    Keywords: aerosol; AETH; Aethalometer; Aethalometer, AE33, Magee Scientific; Arctic aerosol; Arctic Ocean; black carbon; Black carbon, equivalent; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Polarstern; PS122/1; PS122/1_1-82; PS122/2; PS122/2_14-11; PS122/3; PS122/3_28-27; PS122/4; PS122/4_43-21; PS122/5; PS122/5_58-18
    Type: Dataset
    Format: text/tab-separated-values, 96836 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-01
    Description: This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).
    Keywords: aerosols; Arctic aerosol; Arctic Ocean; CCNC; cloud condensation nuclei; Cloud Condensation Nuclei Counter; Condensation particle counter; CPC; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Particle number; Polarstern; PS122/1; PS122/1_1-83; PS122/2; PS122/2_14-33; PS122/3; PS122/3_28-29
    Type: Dataset
    Format: text/tab-separated-values, 94631 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-01
    Description: This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).
    Keywords: aerosols; Arctic aerosol; Arctic Ocean; CCNC; cloud condensation nuclei; Cloud Condensation Nuclei Counter; Condensation particle counter; CPC; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Particle number; Polarstern; PS122/1; PS122/1_1-83; PS122/2; PS122/2_14-33; PS122/3; PS122/3_28-29
    Type: Dataset
    Format: text/tab-separated-values, 95217 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-01
    Description: This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using the model CCN-100 from Droplet Measurement Technologies (DMT, Boulder, USA). Detailed description of the measurement principle can be found in e.g. Roberts & Nenes (2005). The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al., Submitted; Beck et al., 2022; Dada et al., 2022). The measurements were performed in 1-h cycles, with a 0.5 L/min sample flow and a 2 L/min make up flow, where the supersaturations 0.15, 0.2, 0.3, 0.5 and 1.0 % were measured. The supersaturation of 0.15 % is measured for 20 min, as it takes longer to equilibrate, and the remaining supersaturations were measured for 10 min each. The instrument was calibrated in July 2019 before the campaign, and in March and April 2020 during the campaign. Based on the inter-variability of the calculated supersaturation levels during these calibrations, we can expect values ranging from 0.15-0.20, 0.20-0.25, 0.29-0.33, 0.43-0.5, 0.78-1.0 % for the nominal supersaturations of 0.15, 0.2, 0.3, 0.5 and 1.0 %, respectively. The counting error for the CCNC is associated with the error in the optical counting of particles and is about 10 %. Data were removed during the cooling cycle (i.e., the time when the measurement cycle starts again and the temperature is cooled to set the lowest supersaturation), which corresponds roughly to the first 10 min of each hour (so 50 % of the 0.15 % supersaturation period). Additionally, the first minute of the transition between supersaturations was removed before averaging the data to 1 min time resolution. During some time periods, a difference pattern of mean and standard deviation of the measurements between even and odd hours was observed, most probably caused by a persistent pressure drop in the inlet lines, resulting in a proportional reduction of the concentration measurements. For correction, the 1-h arithmetic mean of interstitial inlet measurements and the mean of the two adjacent hours of total inlet measurements were subtracted, and the resulting difference was added as a constant to the data points of the interstitial inlet measurements. The dataset contains a pollution mask for local pollution (predominantly exhaust from the Research Vessel Polarstern) with 0 indicating clean, and 1 indicating polluted periods (Beck et al., 2022; Beck et al., 2022).
    Keywords: aerosols; Arctic aerosol; Arctic Ocean; CCNC; cloud condensation nuclei; Cloud Condensation Nuclei Counter; Condensation particle counter; CPC; DATE/TIME; Event label; Flag, pollution; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Particle number; Polarstern; PS122/1; PS122/1_1-83; PS122/2; PS122/2_14-33; PS122/3; PS122/3_28-29
    Type: Dataset
    Format: text/tab-separated-values, 66990 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-01
    Description: This dataset contains hourly-averaged carbon monoxide dry air mole fractions measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. This is a merged dataset that combines cross-evaluated measurements performed in the Atmospheric Radiation Measurement (ARM) Program and Swiss containers on the D-deck of Research Vessel Polarstern, along with data from discrete whole air samples collected for post-cruise analysis at the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Laboratory (GML). The data columns include the Date and Time in Coordinated Universal Time (UTC), the latitude and longitude of the Research Vessel Polarstern, the carbon monoxide dry air mole fraction in nmol/mol, and the sampling location.
    Keywords: Aerosol Observing System; AIRS; Air sampler; AOS; Arctic Ocean; carbon monoxide; Carbon monoxide, dry-air mole fraction; central Arctic Ocean; DATE/TIME; LATITUDE; Location; LONGITUDE; MOSAiC; MOSAiC_ATMOS; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Polarstern; PS122/1; PS122/1_1-342; PS122/1_1-75; PS122/1_4-38; PS122/2; PS122/2_14-15; PS122/2_14-256; PS122/2_20-118; PS122/2_21-131; PS122/2_22-100; PS122/2_23-112; PS122/2_24-91; PS122/3; PS122/3_28-38; PS122/3_29-86; PS122/3_31-97; PS122/3_32-99; PS122/3_34-100; PS122/3_34-99; PS122/3_35-123; PS122/3_36-92; PS122/3_37-163; PS122/3_39-138; PS122/3_40-54; PS122/3_41-21; PS122/3_42-51; PS122/4; PS122/4_43-127; PS122/4_43-30; PS122/4_44-145; PS122/4_45-4; PS122/4_47-106; PS122/4_47-107; PS122/4_50-7; PS122/5; PS122/5_58-29; PS122/5_59-477; PS122/5_60-221; PS122/5_61-43; Snow sampler metal; SSM; TGM; Trace gas monitor
    Type: Dataset
    Format: text/tab-separated-values, 15740 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...