GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Active upwelling  (1)
  • Continental tectonics: extensional  (1)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © Oxford University Press, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 205 (2016): 728-743, doi:10.1093/gji/ggw044.
    Description: While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.
    Description: This work was supported by NSF grants OCE-11-54238 (JAO, MDB), EAR-10-10432 (MDB) and OCE-11-55098 (GI), as well as a WHOI Deep Exploration Institute grant and start-up support from the University of Idaho (EM).
    Keywords: Mid-ocean ridge processes ; Continental tectonics: extensional ; Lithospheric flexure ; Mechanics, theory, and modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 2354–2373, doi:10.1002/2016GC006380.
    Description: We use data from an extensive multibeam bathymetry survey of the Chile Ridge to study tectonomagmatic processes at the ridge axis. Specifically, we investigate how abyssal hills evolve from axial faults, how variations in magmatic extension influence morphology and faulting along the spreading axis, and how these variations correlate with ridge segmentation. The bathymetry data are used to estimate the fraction of plate separation accommodated by normal faulting, and the remaining fraction of extension, M, is attributed primarily to magmatic accretion. Results show that M ranges from 0.85 to 0.96, systematically increasing from first-order and second-order ridge segment offsets toward segment centers as the depth of ridge axis shoals relative to the flanking highs of the axial valley. Fault spacing, however, does not correlate with ridge geometry, morphology, or M along the Chile Ridge, which suggests the observed increase in tectonic strain toward segment ends is achieved through increased slip on approximately equally spaced faults. Variations in M along the segments follow variations in petrologic indicators of mantle melt fraction, both showing a preferred length scale of 50 ± 20 km that persists even along much longer ridge segments. In comparison, mean M and axial relief fail to show significant correlations with distance offsetting the segments. These two findings suggest a form of magmatic segmentation that is partially decoupled from the geometry of the plate boundary. We hypothesize this magmatic segmentation arises from cells of buoyantly upwelling mantle that influence tectonic segmentation from the mantle, up.
    Description: NSF grants Grant Number: OCE-11-55098; (S.M.H. and G.I.) and OCE-11-54238
    Description: 2016-12-24
    Keywords: Chile Ridge ; Active upwelling ; Abyssal hill evolution ; Faulting and magmatism ; Ridge morphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...