GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acropora millepora; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates; Carbohydrates, per cell; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fiji; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Gene name; Gross photosynthesis/respiration ratio; Group; Growth/Morphology; Laboratory experiment; Light enhanced dark respiration, oxygen; Lipid content; Lipids per cell; Maximum photochemical quantum yield of photosystem II; Montipora monasteriata; mRNA gene expression, relative; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Pocillopora damicornis; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Protein per cell; Proteins; Registration number of species; Respiration; Salinity; Single species; Species; Symbiont cell density; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Turbinaria reniformis; Type; Uniform resource locator/link to reference  (1)
  • CO2 fugacity  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoadley, Kenneth D; Pettay, D Tye; Grottoli, Andréa G; Cai, Wei-Jun; Melman, Todd F; Schoepf, Verena; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yongchen; Matsui, Yohei; Baumann, Justin H; Warner, Mark E (2015): Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host+symbiont response. Scientific Reports, 5, 18371, https://doi.org/10.1038/srep18371
    Publication Date: 2024-03-15
    Description: The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.
    Keywords: Acropora millepora; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates; Carbohydrates, per cell; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fiji; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression (incl. proteomics); Gene name; Gross photosynthesis/respiration ratio; Group; Growth/Morphology; Laboratory experiment; Light enhanced dark respiration, oxygen; Lipid content; Lipids per cell; Maximum photochemical quantum yield of photosystem II; Montipora monasteriata; mRNA gene expression, relative; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Pocillopora damicornis; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Protein per cell; Proteins; Registration number of species; Respiration; Salinity; Single species; Species; Symbiont cell density; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Turbinaria reniformis; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 21425 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Turk, D., Wang, H., Hu, X., Gledhill, D. K., Wang, Z. A., Jiang, L., & Cai, W. Time of Emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Frontiers in Marine Science, 6, (2019):91, doi:10.3389/fmars.2019.00091.
    Description: Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
    Description: HW was partially supported by an NSF grant (OCE#1654232) while being a research associate at TAMUCC.
    Keywords: Ocean acidification ; CO2 fugacity ; Time of emergence ; Climate change ; Novel statistical approaches ; Observing system optimization ; Decision making tool
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...