GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustics  (1)
  • Age, dated; Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CTD, Sea-Bird SBE 911plus; Emiliania huxleyi; Emiliania huxleyi, diameter; Emiliania huxleyi, weight; Emiliania huxleyi, weight, standard error; EPOCA; Estimated by measuring brightness in cross-polarized light (birefringence); EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Indian Ocean; LATITUDE; LONGITUDE; Measured and/or detected by SYRACO software; North Atlantic; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phytoplankton; Replicates; Salinity; Sample ID; South Atlantic; South Pacific; Temperature, water; Titration potentiometric  (1)
  • Course; DATE/TIME; Humidity, relative; LATITUDE; LONGITUDE; meteorological data; Navigation; Navigation and meteorological acquiring during the full course of the campaign; Pacific Ocean; position; Pressure, atmospheric; Solar azimuth angle; Solar zenith angle; Speed; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; Temperature, air; Temperature, water; UMS; Underway, multiple sensors; Validation flag/comment; Wind apparent direction, reference angle, bow; Wind apparent direction, reference angle, north; Wind apparent speed; Wind direction, true; Wind speed, true  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from navigation and meteorological instruments acquiring continuously during the full course of the campaign.
    Keywords: Course; DATE/TIME; Humidity, relative; LATITUDE; LONGITUDE; meteorological data; Navigation; Navigation and meteorological acquiring during the full course of the campaign; Pacific Ocean; position; Pressure, atmospheric; Solar azimuth angle; Solar zenith angle; Speed; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; Temperature, air; Temperature, water; UMS; Underway, multiple sensors; Validation flag/comment; Wind apparent direction, reference angle, bow; Wind apparent direction, reference angle, north; Wind apparent speed; Wind direction, true; Wind speed, true
    Type: Dataset
    Format: text/tab-separated-values, 10873547 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Beaufort, Luc; Probert, Ian; de Garidel-Thoron, Thibault; Bendif, E M; Ruiz-Pino, Diana; Metzi, N; Goyet, Catherine; Buchet, Noëlle; Coupel, Pierre; Grelaud, Michaël; Rost, Björn; Rickaby, Rosalind E M; De Vargas, Colomban (2011): Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476, 80-83, https://doi.org/10.1038/nature10295
    Publication Date: 2024-03-15
    Description: About one-third of the carbon dioxide (CO2) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO2 have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO2 and concomitant decreasing concentrations of CO3. Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.
    Keywords: Age, dated; Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CTD, Sea-Bird SBE 911plus; Emiliania huxleyi; Emiliania huxleyi, diameter; Emiliania huxleyi, weight; Emiliania huxleyi, weight, standard error; EPOCA; Estimated by measuring brightness in cross-polarized light (birefringence); EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Indian Ocean; LATITUDE; LONGITUDE; Measured and/or detected by SYRACO software; North Atlantic; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phytoplankton; Replicates; Salinity; Sample ID; South Atlantic; South Pacific; Temperature, water; Titration potentiometric
    Type: Dataset
    Format: text/tab-separated-values, 16400 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Capotondi, A., Jacox, M., Bowler, C., Kavanaugh, M., Lehodey, P., Barrie, D., Brodie, S., Chaffron, S., Cheng, W., Dias, D. F., Eveillard, D., Guidi, L., Iudicone, D., Lovenduski, N. S., Nye, J. A., Ortiz, I., Pirhalla, D., Buil, M. P., Saba, V., Sheridan, S., Siedlecki, S., Subramanian, A., de Vargas, C., Di Lorenzo, E., Doney, S. C., Hermann, A. J., Joyce, T., Merrifield, M., Miller, A. J., Not, F., & Pesant, S. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Frontiers in Marine Science, 6, (2019): 623, doi:10.3389/fmars.2019.00623.
    Description: Many coastal areas host rich marine ecosystems and are also centers of economic activities, including fishing, shipping and recreation. Due to the socioeconomic and ecological importance of these areas, predicting relevant indicators of the ecosystem state on sub-seasonal to interannual timescales is gaining increasing attention. Depending on the application, forecasts may be sought for variables and indicators spanning physics (e.g., sea level, temperature, currents), chemistry (e.g., nutrients, oxygen, pH), and biology (from viruses to top predators). Many components of the marine ecosystem are known to be influenced by leading modes of climate variability, which provide a physical basis for predictability. However, prediction capabilities remain limited by the lack of a clear understanding of the physical and biological processes involved, as well as by insufficient observations for forecast initialization and verification. The situation is further complicated by the influence of climate change on ocean conditions along coastal areas, including sea level rise, increased stratification, and shoaling of oxygen minimum zones. Observations are thus vital to all aspects of marine forecasting: statistical and/or dynamical model development, forecast initialization, and forecast validation, each of which has different observational requirements, which may be also specific to the study region. Here, we use examples from United States (U.S.) coastal applications to identify and describe the key requirements for an observational network that is needed to facilitate improved process understanding, as well as for sustaining operational ecosystem forecasting. We also describe new holistic observational approaches, e.g., approaches based on acoustics, inspired by Tara Oceans or by landscape ecology, which have the potential to support and expand ecosystem modeling and forecasting activities by bridging global and local observations.
    Description: This study was supported by the NOAA’s Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) Program through grants NA17OAR4310106, NA17OAR4310104, NA17OAR4310108, NA17OAR4310109, NA17OAR4310110, NA17OAR4310111, NA17OAR4310112, and NA17OAR4310113. This manuscript is a product of the NOAA/MAPP Marine Prediction Task Force. The Tara Oceans consortium acknowledges support from the CNRS Research Federation FR2022 Global Ocean Systems Ecology and Evolution, and OCEANOMICS (grant agreement ‘Investissement d’Avenir’ ANR-11-BTBR-0008). This is article number 95 of the Tara Oceans consortium. MK and SD acknowledge support from NASA grant NNX14AP62A “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)” funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the NOAA Integrated Ocean Observing System (IOOS) Program Office. WC, IO, and AH acknowledge partial support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2019-1029. This study received support from the European H2020 International Cooperation project MESOPP (Mesopelagic Southern Ocean Prey and Predators), grant agreement no. 692173.
    Keywords: Marine ecosystems ; Modeling and forecasting ; Seascapes ; Genetics ; Acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...