GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: The NOAA National Underseas Research Program at Rutgers University is establishing a Long-term Ecosystem Observatory off New Jersey in 15 meters of water. As part of a bottom boundary layer study at this site, WHOI deployed a bottom instrument frame during the winter of 1993-94. The bottom instrument carried a current meter, a vertical array of optical back scattering sensors, temperature, pressure and conductivity sensors and an Acoustical Backscattering Sensor. The deployment was partially successful as the acoustic system failed. The other instrumentation worked well for 3 weeks returning data on winter conditions at the site. The extreme winter waves ended the experiment by tipping the instrument over on its side. The optical instrumentation was calibrated with sediment from the site, and the results from the experiment presented.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration through Contract No. 4-25020 to Rutgers/SUNY National Underseas Research Program.
    Keywords: Sediment transport ; LEO-15 ; Acoustic backscatter
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 2848458 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial License. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 365-378, doi:10.1093/icesjms/fsp262.
    Description: A commercial acoustic system, originally designed for seafloor applications, has been adapted for studying fish with swimbladders. The towed system contains broadband acoustic channels collectively spanning the frequency range 1.7–100 kHz, with some gaps. Using a pulse-compression technique, the range resolution of the echoes is ~20 and 3 cm in the lower and upper ranges of the frequencies, respectively, allowing high-resolution imaging of patches and resolving fish near the seafloor. Measuring the swimbladder resonance at the lower frequencies eliminates major ambiguities normally associated with the interpretation of fish echo data: (i) the resonance frequency can be used to estimate the volume of the swimbladder (inferring the size of fish), and (ii) signals at the lower frequencies do not depend strongly on the orientation of the fish. At-sea studies of Atlantic herring demonstrate the potential for routine measurements of fish size and density, with significant improvements in accuracy over traditional high-frequency narrowband echosounders. The system also detected patches of scatterers, presumably zooplankton, at the higher frequencies. New techniques for quantitative use of broadband systems are presented, including broadband calibration and relating target strength and volume-scattering strength to quantities associated with broadband signal processing.
    Description: The research was supported by the US Office of Naval Research, grants number N00014-04-1-0440 and N00014-04-1-0475, NOAA/CICOR cooperative agreement NA17RJ1223, NOAA/ National Marine Fisheries Service, and the J. Seward Johnson Chair of the WHOI Academic Programs Office.
    Keywords: Acoustic scattering ; Broadband ; Echosounder ; Fish ; Resonance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: A bottom instrument was deployed on May 5,1993, recovered and redeployed on June 22, 1993 and finally recovered on July 28, 1993 at a 30 meter site in the New York Bight Apex. The instrument measured currents, suspended sediment concentrations, pressure, temperature and conductivity. The data storage was filled in only seven days on the first deployment as in 18 days in the second. The averaging sampling process worked well, producing hourly (first deployment) and half hourly (second deployment) values of all sensors and instrument internal diagnostics to obtain background environmental information. The burst sampling scheme sampled once a day for waves, and identified 6 and 10 second waves present. The event sampling scheme was tested for the first time. During deployment one, high frequency pressure signals were allowed to trigger events, and bad cabling caused excessive events to be recorded, filling the memory prematurely. For deployment two, only the optical sediment sensors were allowed to trigger events, and 146 events were recorded. Many of the events were only seen in one or the other optical sensor and probably associated with fish or floating debris. Other events had unique signatures, one type possibly due to passing ships.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration and the U.S. Army Corps of Engineers, New York District.
    Keywords: New York Bight ; Sediment transport ; Bottom monitoring instrumentation ; Onrust (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 3829790 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...