GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cyanobacteria  (3)
  • Acetylene reduction  (1)
  • Eddy-wind interaction  (1)
  • Flexing  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Green sulfur bacterium ; Flexing ; Gliding ; Obligate phototroph ; Bacteriochlorophyll c
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A flexing and gliding green sulfur bacterium has been isolated from marine sources off the North East coast of the USA. Chloroherpeton thalassium is an obligate phototroph, and requires CO2 and S2- for growth; some organic acids can contribute to cell carbon, and N2 may be fixed. The cells contain typical chlorosomes, and gas vesicles may be present. Bacteriochlorophyll c is the main light harvesting pigment, and a small quantity of bacteriochlorophyll a is also present. Over 80% of the carotenoid is γ-carotene. DNA base composition of the isolates ranges from 45.0–48.2 mol% G+C.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 133 (1982), S. 172-177 
    ISSN: 1432-072X
    Keywords: Beggiatoa ; Nitrogen fixation ; Acetylene reduction ; Nitrate assimilation ; Microaerobic ; Isolation of marine strains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four newly isolated marine strains of Beggiatoa and five freshwater strains were tested for nitrogen fixation in slush agar medium. All strains reduced acetylene when grown microaerobically in media containing a reduced sulfur source and lacking added combined nitrogen. The addition of 2 mmol N, as nitrate or ammonium salts, completely inhibited this reduction. Although not optimized for temperature or cell density, acetylene reduction rates ranged from 3.2 to 12 nmol·mg prot-1 min-1. Two freshwater strains did not grow well or reduce acetylene in medium lacking combined nitrogen if sulfide was replaced by thiosulfate. Two other strains grew well in liquid media lacking both combined nitrogen and reduced sulfur compounds but only under lowered concentrations of air. All freshwater strains grew well in medium containing nitrate as the combined nitrogen source. Since they did not reduce acetylene under these conditions, we infer that they can assimilate nitrate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Prokaryote ; Prochlorophyte ; Prochlorococcus marinus ; Cyanobacteria ; Picoplankton ; Molecular phylogeny ; Divinyl chlorophyll
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several years ago, prochlorophyte picoplankton were discovered in the N. Atlantic. They have since been found to be abundant within the euphotic zone of the world's tropical and temperate oceans. The cells are extremely small, lack phycobiliproteins, and contain divinyl chlorophyll a and b as their primary photosynthetic pigments. Phylogenies constructed from DNA sequence data indicate that these cells are more closely related to a cluster of marine cyanobacteria than to their prochlorophyte ‘relatives’ Prochlorothrix and Prochloron. Several strains of this organism have recently been brought into culture, and herewith are given the name Prochlorococcus marinus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2001. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 67 (2001): 5444-5452, doi:10.1128/AEM.67.12.5444-5452.2001.
    Description: Cyanobacteria are prominent constituents of the marine biosphere that account for a significant percentage of oceanic primary productivity. In an effort to resolve how open-ocean cyanobacteria persist in regions where the Fe concentration is thought to be limiting their productivity, we performed a number of Fe stress experiments on axenic cultures of marine Synechococcus spp., Crocosphaera sp., and Trichodesmium sp. Through this work, we determined that all of these marine cyanobacteria mount adaptive responses to Fe stress, which resulted in the induction and/or repression of several proteins. We have identified one of the Fe stress-induced proteins as an IdiA homologue. Genomic observations and laboratory data presented herein from open-ocean Synechococcus spp. are consistent with IdiA having a role in cellular Fe scavenging. Our data indicate that IdiA may make an excellent marker for Fe stress in open-ocean cyanobacterial field populations. By determining how these microorganisms respond to Fe stress, we will gain insight into how and when this important trace element can limit their growth in situ. This knowledge will greatly increase our understanding of how marine Fe cycling impacts oceanic processes, such as carbon and nitrogen fixation.
    Description: This work was partially funded by the Woods Hole Oceanographic Institution postdoctoral scholarship and a subcontract from the Center for Bioinorganic Chemistry at Princeton University (grant no. CHE-9810248) to E.A.W. Additional funds were supplied by the Seaver Institute to J.W.M.
    Keywords: Cyanobacteria ; Synechococcus spp. ; Crocosphaera sp ; Trichodesmium sp ; Iron stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1352032 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2005. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 71 (2005): 7401-7413, doi:10.1128/AEM.71.11.7401-7413.2005.
    Description: Natural products are a functionally diverse class of biochemically synthesized compounds, which include antibiotics, toxins, and siderophores. In this paper, we describe both the detection of natural product activities and the sequence identification of gene fragments from two molecular systems that have previously been implicated in natural product production, i.e., nonribosomal peptide synthetases (NRPSs) and modular polyketide synthases (PKSs), in diverse marine and freshwater cyanobacterial cultures. Using degenerate PCR and the sequencing of cloned products, we show that NRPSs and PKSs are common among the cyanobacteria tested. Our molecular data, when combined with genomic searches of finished and progressing cyanobacterial genomes, demonstrate that not all cyanobacteria contain NRPS and PKS genes and that the filamentous and heterocystous cyanobacteria are the richest sources of these genes and the most likely sources of novel natural products within the phylum. In addition to validating the use of degenerate primers for the identification of PKS and NRPS genes in cyanobacteria, this study also defines numerous gene fragments that will be useful as probes for future studies of the synthesis of natural products in cyanobacteria. Phylogenetic analyses of the cyanobacterial NRPS and PKS fragments sequenced in this study, as well as those from the cyanobacterial genome projects, demonstrate that there is remarkable diversity and likely novelty of these genes within the cyanobacteria. These results underscore the potential variety of novel products being produced by these ubiquitous organisms.
    Description: I.M.E. was partially supported through a Woods Hole Oceanographic Institution Summer Fellowship. This work was funded by a WHOI internal grant, Woods Hole Center for Oceans and Human Health (OCE-0430724), and an NSF grant (OCE-0352241) to E.A.W.
    Keywords: Nonribosomal peptide synthetases (NRPSs) ; Modular polyketide synthases (PKSs) ; Cyanobacteria
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 712305 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4129–4150, doi:10.1002/2015JC010728.
    Description: Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic.
    Description: We gratefully acknowledge support of this research by NSF and NASA. A NASA Earth and Space Science Fellowship supported E. Olson's graduate studies.
    Keywords: Eddy-wind interaction ; Amazon plume ; Video plankton recorder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...