GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acanthoica biscayensis; Acanthoica quattrospina; Adriatic Sea; Aegean Sea; Alboran Sea; Algirosphaera cucullata; Algirosphaera robusta; Alisphaera capulata; Alisphaera extenta; Alisphaera gaudii; Alisphaera ordinata; Alisphaera unicornis; Anacanthoica acanthos; Anoplosolenia brasiliensis; Anthosphaera lafourcadii; Anthosphaera origami; Anthosphaera periperforata; Anthosphaera sp.; Calcidiscus leptoporus; Calcidiscus leptoporus ssp. leptoporus; Calcidiscus leptoporus ssp. quadriperforatus; Calciopappus caudatus; Calciopappus rigidus; Calciosolenia murrayi; Calicasphaera concava; Calyptrolithina divergens; Calyptrolithina multipora; Calyptrosphaera cialdii; Calyptrosphaera dentata; Calyptrosphaera heimdalae; Calyptrosphaera sp.; Calyptrosphaera sphaeroidea; Cells, total; Ceratolithus cristatus; Coccolithophores; Coccolithophoridae sp.; Coccolithus pelagicus ssp. braarudii; Confidence; Corisphaera gracilis; Corisphaera sp.; Corisphaera strigilis; Corisphaera tyrrheniensis; Coronosphaera binodata; Coronosphaera mediterranea; CTD/Rosette; CTD-RO; Cyrtosphaera lecaliae; DATE/TIME; DEPTH, water; Diatoms; Dictyota sp.; Dinoflagellates; Discosphaera tubifera; Diversity; Eastern Basin; Elevation of event; Emiliania huxleyi; Ericiolus spp.; Event label; Florisphaera profunda; Gephyrocapsa ericsonii; Gephyrocapsa muellerae; Gephyrocapsa oceanica; Gephyrocapsa ornata; Gladiolithus flabellatus; Gliscolithus amitakarenae; Hayaster perplexus; Helicosphaera carteri; Helicosphaera pavimentum; Helladosphaera cornifera; Heterococcolithophores; Holococcolithophora; Homozygosphaera spinosa; Homozygosphaera triarcha; Homozygosphaera vercelli; Ionian Sea; Kataspinifera baumannii; Latitude of event; Longitude of event; M287; M288; M291; M292; M293; M294; M296; M297; M298; M299; M302; M305; M306; M307; M308; M309; M313; M316; M319; M320; M321; M324; M329; M331; M332; M334; M337; M338; M84/3; M84/3_287; M84/3_288; M84/3_291; M84/3_292; M84/3_293; M84/3_294; M84/3_296; M84/3_297; M84/3_298; M84/3_299; M84/3_302; M84/3_305; M84/3_306; M84/3_307; M84/3_308; M84/3_309; M84/3_313; M84/3_316; M84/3_319; M84/3_320; M84/3_321; M84/3_324; M84/3_329; M84/3_331; M84/3_332; M84/3_334; M84/3_337; M84/3_338; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Meringosphaera mediterranea; Meteor (1986); Michaelsaria elegans; Number of species; Ophiaster formosus; Ophiaster hydroideus; Palusphaera vandelii; Papposphaera lepida; Papposphaera sp.; Phytoplankton; Pleurochrysis carterae; Polycrater galapagensis; Polycrater spp.; Pontosphaera japonica; Poricalyptra gaarderae; Poritectolithus maximus; Pressure, water; Reticulofenestra parvula; Rhabdosphaera clavigera var. clavigera; Rhabdosphaera xiphos; Scyphosphaera apsteinii; Sphaerocalyptra adenensis; Sphaerocalyptra quadridentata; Sphaerocalyptra sp.; Strait of Gibraltar; Syracolithus sp.; Syracosphaera ampliora; Syracosphaera anthos; Syracosphaera arethusae; Syracosphaera bannockii; Syracosphaera borealis; Syracosphaera corolla; Syracosphaera delicata; Syracosphaera dilatata; Syracosphaera histrica; Syracosphaera lamina; Syracosphaera marginiporata; Syracosphaera molischii; Syracosphaera nana; Syracosphaera nodosa; Syracosphaera noroitica; Syracosphaera ossa; Syracosphaera pirus; Syracosphaera prolongata; Syracosphaera protrudens; Syracosphaera pulchra; Syracosphaera rotula; Syracosphaera sp.; Syracosphaera spp.; Syracosphaera tumularis; Tirreno Sea; Umbellosphaera tenuis; Umbilicosphaera hulburtiana; Umbilicosphaera sibogae var. sibogae; Western Basin; Zygosphaera amoena  (1)
  • Alkalinity, total; Aragonite saturation state; Atlantic Ocean; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate chemistry; Carbonate ion; Carbon dioxide; DATE/TIME; Dendrophyllia_Bycatch; Experimental treatment; Experiment duration; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; NE Atlantic; NW Spain; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Replicate; Salinity; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Spectrophotometric; Treatment: temperature; Type of study; WTW Multi Set 350i multiparameter probe  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oviedo, Angela Maria; Ziveri, Patrizia; Álvarez, Marta; Tanhua, Toste (2015): Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry? Ocean Science, 11(1), 13-32, https://doi.org/10.5194/os-11-13-2015
    Publication Date: 2024-03-14
    Description: The Mediterranean Sea is considered a "hot spot" for climate change, being characterized by oligotrophic to ultra-oligotrophic waters and rapidly increasing seasurface temperature and changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these waters. As marine calcifying organisms they are expected to respond to the ongoing changes in seawater carbonate chemistry. We provide here a description of the springtime coccolithophore distribution in the Mediterranean Sea and relate this to a broad set of in situ-measured environmental variables. Samples were taken during the R/V Meteor (M84/3) oceanographic cruise in April 2011, between 0 and 100 m water depth from 28 stations. Total diatom and silicoflagellate cell concentrations are also presented. Our results highlight the importance of seawater carbonate chemistry, especially [CO3]2- but also [PO4]3- in unraveling the distribution of heterococcolithophores, the most abundant coccolithophore life phase. Holo- and heterococcolithophores respond differently to environmental factors. For instance, changes in heterococcolithophore assemblages were best linked to the combination of [CO3]2-, pH, and salinity (rho = 0.57), although salinity might be not functionally related to coccolithophore assemblage distribution. Holococcolithophores, on the other hand, showed higher abundances and species diversity in oligotrophic areas (best fit, rho = 0.32 for nutrients), thriving in nutrient-depleted waters. Clustering of heterococcolithophores revealed three groups of species sharing more than 65% similarities. These clusters could be assigned to the eastern and western basins and deeper layers (below 50 m), respectively. In addition, the species Gephyrocapsa oceanica, G. muellerae, and Emiliania huxleyi morphotype B/C are spatially distributed together and trace the influx of Atlantic waters into the Mediterranean Sea. The results of the present work emphasize the importance of considering holo- and heterococcolithophores separately when analyzing changes in species assemblages and diversity. Our findings suggest that coccolithophores are a main phytoplankton group in the entire Mediterranean Sea and can dominate over siliceous phytoplankton. They have life stages that are expected to respond differently to the variability in seawater carbonate chemistry and nutrient concentrations.
    Keywords: Acanthoica biscayensis; Acanthoica quattrospina; Adriatic Sea; Aegean Sea; Alboran Sea; Algirosphaera cucullata; Algirosphaera robusta; Alisphaera capulata; Alisphaera extenta; Alisphaera gaudii; Alisphaera ordinata; Alisphaera unicornis; Anacanthoica acanthos; Anoplosolenia brasiliensis; Anthosphaera lafourcadii; Anthosphaera origami; Anthosphaera periperforata; Anthosphaera sp.; Calcidiscus leptoporus; Calcidiscus leptoporus ssp. leptoporus; Calcidiscus leptoporus ssp. quadriperforatus; Calciopappus caudatus; Calciopappus rigidus; Calciosolenia murrayi; Calicasphaera concava; Calyptrolithina divergens; Calyptrolithina multipora; Calyptrosphaera cialdii; Calyptrosphaera dentata; Calyptrosphaera heimdalae; Calyptrosphaera sp.; Calyptrosphaera sphaeroidea; Cells, total; Ceratolithus cristatus; Coccolithophores; Coccolithophoridae sp.; Coccolithus pelagicus ssp. braarudii; Confidence; Corisphaera gracilis; Corisphaera sp.; Corisphaera strigilis; Corisphaera tyrrheniensis; Coronosphaera binodata; Coronosphaera mediterranea; CTD/Rosette; CTD-RO; Cyrtosphaera lecaliae; DATE/TIME; DEPTH, water; Diatoms; Dictyota sp.; Dinoflagellates; Discosphaera tubifera; Diversity; Eastern Basin; Elevation of event; Emiliania huxleyi; Ericiolus spp.; Event label; Florisphaera profunda; Gephyrocapsa ericsonii; Gephyrocapsa muellerae; Gephyrocapsa oceanica; Gephyrocapsa ornata; Gladiolithus flabellatus; Gliscolithus amitakarenae; Hayaster perplexus; Helicosphaera carteri; Helicosphaera pavimentum; Helladosphaera cornifera; Heterococcolithophores; Holococcolithophora; Homozygosphaera spinosa; Homozygosphaera triarcha; Homozygosphaera vercelli; Ionian Sea; Kataspinifera baumannii; Latitude of event; Longitude of event; M287; M288; M291; M292; M293; M294; M296; M297; M298; M299; M302; M305; M306; M307; M308; M309; M313; M316; M319; M320; M321; M324; M329; M331; M332; M334; M337; M338; M84/3; M84/3_287; M84/3_288; M84/3_291; M84/3_292; M84/3_293; M84/3_294; M84/3_296; M84/3_297; M84/3_298; M84/3_299; M84/3_302; M84/3_305; M84/3_306; M84/3_307; M84/3_308; M84/3_309; M84/3_313; M84/3_316; M84/3_319; M84/3_320; M84/3_321; M84/3_324; M84/3_329; M84/3_331; M84/3_332; M84/3_334; M84/3_337; M84/3_338; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Meringosphaera mediterranea; Meteor (1986); Michaelsaria elegans; Number of species; Ophiaster formosus; Ophiaster hydroideus; Palusphaera vandelii; Papposphaera lepida; Papposphaera sp.; Phytoplankton; Pleurochrysis carterae; Polycrater galapagensis; Polycrater spp.; Pontosphaera japonica; Poricalyptra gaarderae; Poritectolithus maximus; Pressure, water; Reticulofenestra parvula; Rhabdosphaera clavigera var. clavigera; Rhabdosphaera xiphos; Scyphosphaera apsteinii; Sphaerocalyptra adenensis; Sphaerocalyptra quadridentata; Sphaerocalyptra sp.; Strait of Gibraltar; Syracolithus sp.; Syracosphaera ampliora; Syracosphaera anthos; Syracosphaera arethusae; Syracosphaera bannockii; Syracosphaera borealis; Syracosphaera corolla; Syracosphaera delicata; Syracosphaera dilatata; Syracosphaera histrica; Syracosphaera lamina; Syracosphaera marginiporata; Syracosphaera molischii; Syracosphaera nana; Syracosphaera nodosa; Syracosphaera noroitica; Syracosphaera ossa; Syracosphaera pirus; Syracosphaera prolongata; Syracosphaera protrudens; Syracosphaera pulchra; Syracosphaera rotula; Syracosphaera sp.; Syracosphaera spp.; Syracosphaera tumularis; Tirreno Sea; Umbellosphaera tenuis; Umbilicosphaera hulburtiana; Umbilicosphaera sibogae var. sibogae; Western Basin; Zygosphaera amoena
    Type: Dataset
    Format: text/tab-separated-values, 11340 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-19
    Description: A 9-month aquarium experiment with the cold-water Dendrophyllia cornigera was conducted to investigate the single and combined effects of warming, acidification and deoxygenation on its ecophysiological response. The experiment took place at the Aquarium finisterrae (A Coruña, Spain) between 2022-05-06 and 2023-02-24. Treatment values for each parameter (current in situ vs. climate change) were: 12 °C and 15 °C (temperature); ~7.99 and 7.69 (pH); ~8.63 mg/L and 6.45 mg/L (dissolved oxygen concentration). A total of eight treatments (with 3 replicates each, 5 L aquaria) were set up. Measurements for pH and total alkalinity (TA) were performed on seawater samples from all the experimental aquaria every 1 – 2 months. Samples for pH were directly collected on cylindrical 10 cm cuvettes and analysed on daily basis. After being thermostated at 25ºC, samples were measured using a manual spectrophotometrical procedure with a Sigma Aldrich impure indicator (Clayton and Byrne, 1993). TA was measured following the double end point potentiometric technique by Pérez and Fraga (1987a) and Pérez et al. (2000). Measurements of Certified Reference Material (Dickson's lab, SIO) were performed in order to control the accuracy of the TA measurements. The uncertainty of TA and pH is about 3 μmol/kg and 0.005 pH units, respectively. In situ additional CO2 system variables were calculated using the R package seacarb (Gattuso et al. 2023) using in situ temperature, salinity, measured pH and TA, the dissociation constants of carbonic acid in seawater (K1 and K2) by Lueker et al. (2000), the equilibrium constant of hydrogen fluoride by Perez and Fraga (1987b), the concentration of total boron by Uppström (1974) formulation, and the stability constant of hydrogen sulphate by Dickson (1990). Mean values for the concentration of silicate and phosphate on the aquaria experiments were used in the CO2 calculations, respectively, mean (and standard) deviations as 2.1 (0.4) and 0.31 (0.03) μmol/kg.
    Keywords: Alkalinity, total; Aragonite saturation state; Atlantic Ocean; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate chemistry; Carbonate ion; Carbon dioxide; DATE/TIME; Dendrophyllia_Bycatch; Experimental treatment; Experiment duration; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; NE Atlantic; NW Spain; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Replicate; Salinity; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Spectrophotometric; Treatment: temperature; Type of study; WTW Multi Set 350i multiparameter probe
    Type: Dataset
    Format: text/tab-separated-values, 2822 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...