GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; Climate change; cold-water corals; Deep-sea; File format; File name; File size; fisheries; fishes; habitat suitability modelling; octocorals; scleractinians; species distribution models; Uniform resource locator/link to file; vulnerable marine ecosystems  (1)
  • B_LANDER; Bottom lander; Carbon, flux; Carbon, organic, total; Carbon/Nitrogen ratio; DATE/TIME; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; Delta V Advantage IRMS coupled to a Flash 2000 EA (EA-IRMS) by a 199 Conflo IV (Thermo Fisher Scientific Inc.); Martha L. Black; MLB2017001; MLB2017001_019; Nitrogen, total; SB_01; South Atlantic Ocean; SponGES; Technicap PPS4/3 181; Total mass, flux per day; δ13C; δ15N  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-03-10
    Description: The Scotian Shelf harbors unique aggregations of the glass sponge Vazella pourtalesii providing an important habitat for benthic and pelagic fauna. Recent studies have shown that these sponge grounds have persisted in the face of strong inter-annual and multi-decadal variability in temperature and salinity. However, little is known of the environmental characteristics on hourly-seasonal time scales. This study presents the first hydrodynamic observations and associated (food) particle supply mechanisms for the Vazella sponge grounds, highlighting the influence of natural variability in environmental conditions on sponge growth and resilience. Near-bottom environmental conditions were characterized by high temporal resolution data collected with a benthic lander, deployed during a period of 10-months in the Sambro Bank Sponge Conservation Area. The lander was equipped with temperature and oxygen sensors, a current meter, a sediment trap and a video camera. In addition, water column profiles of temperature and salinity were recorded along a transect, conducted in a gradient from high to lower sponge presence probability. Over the course of the lander deployment, temperature fluctuated between 8.8-12 °C with an average of 10.6 °C ± 0.4 °C. The water contained on average 6.3 mg l-1 oxygen and near bottom current speed was on average 0.12 m/s, with peaks up to 0.47 m/s. Semi-diurnal tidal flow was observed to result in constant resuspension of particulate matter in the benthic boundary layer. Surface storm events episodically caused extremely turbid conditions on the seafloor that persisted for several days, with particles being resuspended to more than 13 m above the seabed. The carbon flux in the near-bottom sediment trap peaked during storm events and also after a spring bloom in April, when fresh phytodetritus was observed in the bottom boundary layer. While resuspension events can represent a major stressor for sponges, limiting their filtration capability and remobilizing them, episodes of strong currents and lateral particle transport likely play an important role in food supply and the replenishment of nutrients and oxygen. Our results contextualize human-induced threats such as bottom fishing and climate change by providing more knowledge of the natural environmental conditions under which sponge grounds persist.
    Keywords: B_LANDER; Bottom lander; Carbon, flux; Carbon, organic, total; Carbon/Nitrogen ratio; DATE/TIME; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; Delta V Advantage IRMS coupled to a Flash 2000 EA (EA-IRMS) by a 199 Conflo IV (Thermo Fisher Scientific Inc.); Martha L. Black; MLB2017001; MLB2017001_019; Nitrogen, total; SB_01; South Atlantic Ocean; SponGES; Technicap PPS4/3 181; Total mass, flux per day; δ13C; δ15N
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-11
    Description: We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to forecast changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean (from 18°N to 76°N and 36°E to 98°W). The VME indicator taxa included Lophelia pertusa , Madrepora oculata, Desmophyllum dianthus, Acanela arbuscula, Acanthogorgia armata, and Paragorgia arborea. The six deep-sea fish species selected were: Coryphaenoides rupestris, Gadus morhua, blackbelly Helicolenus dactylopterus, Hippoglossoides platessoides, Reinhardtius hippoglossoides, and Sebastes mentella. We used an ensemble modelling approach employing three widely-used modelling methods: the Maxent maximum entropy model, Generalized Additive Models, and Random Forest. This dataset contains: 1) Predicted habitat suitability index under present-day (1951-2000) and future (2081-2100; RCP8.5) environmental conditions for twelve deep-sea species in the North Atlantic Ocean, using an ensemble modelling approach.  2) Climate-induced changes in the suitable habitat of twelve deep-sea species in the North Atlantic Ocean, as determined by binary maps built with an ensemble modelling approach and the 10-percentile training presence logistic (10th percentile) threshold. 3) Forecasted present-day suitable habitat loss (value=-1), gain (value=1), and acting as climate refugia (value=2) areas under future (2081-2100; RCP8.5) environmental conditions for twelve deep-sea species in the North Atlantic Ocean. Areas were identified from binary maps built with an ensemble modelling approach and two thresholds: 10-percentile training presence logistic threshold (10th percentile) and maximum sensitivity and specificity (MSS). Refugia areas are those areas predicted as suitable both under present-day and future conditions. All predictions were projected with the Albers equal-area conical projection centred in the middle of the study area. The grid cell resolution is of 3x3 km.
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; Climate change; cold-water corals; Deep-sea; File format; File name; File size; fisheries; fishes; habitat suitability modelling; octocorals; scleractinians; species distribution models; Uniform resource locator/link to file; vulnerable marine ecosystems
    Type: Dataset
    Format: text/tab-separated-values, 384 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...