GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Continental shelf  (2)
  • AC3; after Cox & Weeks (1983); Arctic Amplification; Arctic Ocean; Arctic Research Icebreaker Consortium: A strategy for meeting the needs for marine-based research in the Arctic; ARICE; brine; DATE/TIME; Density, ice; DEPTH, ice/snow; Estimated from electrical conductivity and temperature of the melted ice samples; Event label; first-year ice; HAVOC; IC; Ice corer; Linear interpolation at the midpoint of the sample based on the measurements from the ice temperature profile; MOSAiC; MOSAiC_BGC; MOSAiC_ECO; MOSAiC_ICE; MOSAiC_SNOW; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_10-16; PS122/1_5-78; PS122/1_6-36; PS122/1_7-9; PS122/1_9-11; PS122/2; PS122/2_20-5; PS122/2_22-7; PS122/2_25-15; PS122/3; PS122/3_33-18; PS122/3_36-4; PS122/3_38-16; PS122/3_39-18; Rayleigh number; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Sea ice; second-year ice; see comment; Site; Temperature, ice/snow; Temperature and Salinity; Utility; Volume, brine  (1)
  • Bottle, Niskin; CORSACS-1_NX1; CORSACS-1_NX10; CORSACS-1_NX11; CORSACS-1_NX2; CORSACS-1_NX3; CORSACS-1_NX4; CORSACS-1_NX5; CORSACS-1_NX6; CORSACS-1_NX7; CORSACS-1_NX8; CORSACS-1_NX9; CORSACS-2_NX12; CORSACS-2_NX13; CORSACS-2_NX14; CORSACS-2_NX15; CORSACS-2_NX16; CORSACS-2_NX17; CORSACS-2_NX18; CORSACS-2_NX19; CORSACS-2_NX20; CORSACS I; CORSACS II; DEPTH, water; Event label; International Polar Year (2007-2008); IPY; Iron, dissolvable; Iron, dissolved; Iron, particulate; Mixed layer depth; Nathaniel B. Palmer; NBP0601; NBP0601_NX1; NBP0601_NX10; NBP0601_NX11; NBP0601_NX2; NBP0601_NX3; NBP0601_NX4; NBP0601_NX5; NBP0601_NX6; NBP0601_NX7; NBP0601_NX8; NBP0601_NX9; NBP0608; NBP0608_NX12; NBP0608_NX13; NBP0608_NX14; NBP0608_NX15; NBP0608_NX16; NBP0608_NX17; NBP0608_NX18; NBP0608_NX19; NBP0608_NX20; NIS; Nitrate and Nitrite; Phosphorus, inorganic, dissolved; Ross Sea; Silicic acid  (1)
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sedwick, Peter; Marsay, Christopher M; Sohst, Bettina M; Aguilar-Islas, Ana M; Lohan, Maeve C; Long, Matthew C; Arrigo, Kevin R; Dunbar, Robert B; Saito, Mak A; Smith, Walker O Jr; DiTullio, Giacomo R (2011): Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf. Journal of Geophysical Research, 116(C12), C12019, https://doi.org/10.1029/2010JC006553
    Publication Date: 2023-12-13
    Description: The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a "winter reserve" of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December-February). Here we report new iron data for the Ross Sea polynya during austral summer 2005-2006 (27 December-22 January) and the following austral spring 2006 (16 November-3 December). The summer 2005-2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170-260 mmol C/m**2/d). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become "iron limited" as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006-2007, implying significant sources of "new" dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
    Keywords: Bottle, Niskin; CORSACS-1_NX1; CORSACS-1_NX10; CORSACS-1_NX11; CORSACS-1_NX2; CORSACS-1_NX3; CORSACS-1_NX4; CORSACS-1_NX5; CORSACS-1_NX6; CORSACS-1_NX7; CORSACS-1_NX8; CORSACS-1_NX9; CORSACS-2_NX12; CORSACS-2_NX13; CORSACS-2_NX14; CORSACS-2_NX15; CORSACS-2_NX16; CORSACS-2_NX17; CORSACS-2_NX18; CORSACS-2_NX19; CORSACS-2_NX20; CORSACS I; CORSACS II; DEPTH, water; Event label; International Polar Year (2007-2008); IPY; Iron, dissolvable; Iron, dissolved; Iron, particulate; Mixed layer depth; Nathaniel B. Palmer; NBP0601; NBP0601_NX1; NBP0601_NX10; NBP0601_NX11; NBP0601_NX2; NBP0601_NX3; NBP0601_NX4; NBP0601_NX5; NBP0601_NX6; NBP0601_NX7; NBP0601_NX8; NBP0601_NX9; NBP0608; NBP0608_NX12; NBP0608_NX13; NBP0608_NX14; NBP0608_NX15; NBP0608_NX16; NBP0608_NX17; NBP0608_NX18; NBP0608_NX19; NBP0608_NX20; NIS; Nitrate and Nitrite; Phosphorus, inorganic, dissolved; Ross Sea; Silicic acid
    Type: Dataset
    Format: text/tab-separated-values, 1365 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-01
    Description: We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number.
    Keywords: AC3; after Cox & Weeks (1983); Arctic Amplification; Arctic Ocean; Arctic Research Icebreaker Consortium: A strategy for meeting the needs for marine-based research in the Arctic; ARICE; brine; DATE/TIME; Density, ice; DEPTH, ice/snow; Estimated from electrical conductivity and temperature of the melted ice samples; Event label; first-year ice; HAVOC; IC; Ice corer; Linear interpolation at the midpoint of the sample based on the measurements from the ice temperature profile; MOSAiC; MOSAiC_BGC; MOSAiC_ECO; MOSAiC_ICE; MOSAiC_SNOW; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_10-16; PS122/1_5-78; PS122/1_6-36; PS122/1_7-9; PS122/1_9-11; PS122/2; PS122/2_20-5; PS122/2_22-7; PS122/2_25-15; PS122/3; PS122/3_33-18; PS122/3_36-4; PS122/3_38-16; PS122/3_39-18; Rayleigh number; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Sea ice; second-year ice; see comment; Site; Temperature, ice/snow; Temperature and Salinity; Utility; Volume, brine
    Type: Dataset
    Format: text/tab-separated-values, 2331 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 6371–6393, doi:10.1002/2017JC013068.
    Description: We report water column dissolved iron (dFe) and particulate iron (pFe) concentrations from 50 stations sampled across the Ross Sea during austral summer (January–February) of 2012. Concentrations of dFe and pFe were measured in each of the major Ross Sea water masses, including the Ice Shelf Water and off-shelf Circumpolar Deep Water. Despite significant lateral variations in hydrography, macronutrient depletion, and primary productivity across several different regions on the continental shelf, dFe concentrations were consistently low (〈0.1 nM) in surface waters, with only a handful of stations showing elevated concentrations (0.20–0.45 nM) in areas of melting sea ice and near the Franklin Island platform. Across the study region, pFe associated with suspended biogenic material approximately doubled the inventory of bioavailable iron in surface waters. Our data reveal that the majority of the summertime iron inventory in the Ross Sea resides in dense shelf waters, with highest concentrations within 50 m of the seafloor. Higher dFe concentrations near the seafloor are accompanied by an increased contribution to pFe from authigenic and/or scavenged iron. Particulate manganese is also influenced by sediment resuspension near the seafloor but, unlike pFe, is increasingly associated with authigenic material higher in the water column. Together, these results suggest that following depletion of the dFe derived from wintertime convective mixing and sea ice melt, recycling of pFe in the upper water column plays an important role in sustaining the summertime phytoplankton bloom in the Ross Sea polynya.
    Description: National Science Foundation's United States Antarctic Program Grant Numbers: ANT-0944174 , ANT-0944165; National Science Foundation Grant Number: OCE-0649505
    Description: 2018-02-17
    Keywords: Ross Sea ; Iron ; Manganese ; Particles ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 7576–7583, doi:10.1002/2014GL061684.
    Description: Continental margin sediments provide a potentially large but poorly constrained source of dissolved iron (dFe) to the upper ocean. The Ross Sea continental shelf is one region where this benthic supply is thought to play a key role in regulating the magnitude of seasonal primary production. Here we present data collected during austral summer 2012 that reveal contrasting low surface (0.08 ± 0.07 nM) and elevated near-seafloor (0.74 ± 0.47 nM) dFe concentrations. Combining these observations with results from a high-resolution physical circulation model, we estimate dFe efflux of 5.8 × 107 mol yr−1 from the deeper portions (〉400 m) of the Ross Sea continental shelf; more than sufficient to account for the inferred “winter reserve” dFe inventory at the onset of the growing season. In addition, elevated dFe concentrations observed over shallower bathymetry suggest that such features provide additional inputs of dFe to the euphotic zone throughout the year.
    Description: This research was supported by NSF awards ANT-0944174 to P.N.S. and ANT-0944165 to D.J.M. P.M.B. was also funded by NSF OCE-0649505 to J. Resing.
    Description: 2015-05-03
    Keywords: Ross Sea ; Dissolved iron ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...