GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean-ice shelf interaction  (2)
  • A74 iceberg; calving front; DATE/TIME; DEPTH, water; global warming; GPF 19-2_039, COSMUS; icebergs; ice covered seafloor community; Image; LATITUDE; LONGITUDE; Ocean Floor Observation and Bathymetry System; OFOBS; Polarstern; PS124; PS124_111-8; Weddell Sea  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2024-04-20
    Description: During the RV POLARSTERN expedition PS124 to the Weddell Sea during Jan - April 2021 the Ocean Floor Observation and Bathymetry System (OFOBS) was used to collect still and video images, as well as sidescan data, from various locations surveyed during the research cruise. During the expedition, the giant iceberg A74 calved off from the Antarctic mainland. In this data set we present images taken from within the water column and the seafloor during part of the iceberg circumnavigation conducted by FS POLARSTERN on the 14th of March, 2021. The OFOBS system consisted of a towed underwater camera system equipped with both a high-resolution photo-camera (iSiTEC, CANON EOS 5D Mark III) and a high-definition video-camera (iSiTEC, Sony FCB-H11) as well as an integrated sidescan sonar system. The cameras were mounted on a steel frame (140L x 92W x 135H cm), together with two strobe lights (iSiTEC UW-Blitz 250, TTL driven), three laser pointers spaced with a distance of 50 cm used to estimate the size of seafloor structures, four LED lights, and a USBL positioning system (Posidonia) to track the position of the OFOBS during deployments, with additional positioning information provided by the integrated INS and DVL systems. In automatic mode, a seabed photo, depicting an area of approximately 4-10 m**2, with variations depending on the actual height above ground, was taken every ~15 seconds to obtain series of TIMER stills distributed at regular distances along each of the survey profiles. Profile lengths varied in length depending on duration of the cast. At a ship speed of 0.5 kn, the average distance between seabed images was approximately 5 m, with this spacing being 15 m at 1.5 kt speed. Additional HOTKEY photos were taken from interesting objects (organisms, seabed features, etc) when they appeared in the live video feed. One minute POSIDONIA position fixes were used in this current data set, so there is some offset of a few 10s of meters for some of the collected images.
    Keywords: A74 iceberg; calving front; DATE/TIME; DEPTH, water; global warming; GPF 19-2_039, COSMUS; icebergs; ice covered seafloor community; Image; LATITUDE; LONGITUDE; Ocean Floor Observation and Bathymetry System; OFOBS; Polarstern; PS124; PS124_111-8; Weddell Sea
    Type: Dataset
    Format: text/tab-separated-values, 982 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sueltenfuss, J., Osterhus, S., Stulic, L., Ryan, S., Schroeder, M., & Kanzow, T. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne Ice Shelves in the Southern Weddell Sea. Journal of Geophysical Research: Oceans, 126(6), (2021): e2021JC017269, https://doi.org/10.1029/2021JC017269.
    Description: The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: This study used samples and data provided by the Alfred Wegener Institute Helmholtz-Center for Polar- and Marine Research in Bremerhaven (Grant No. AWI-PS111_01). The authors thank Captain Schwarze and the crew of RV Polarstern for a very successful expedition. We acknowledge support from the EU Horizon 2020 grants 820575 (HHH, SØ) and 821001 (TK, SØ).
    Keywords: Ocean circulation ; Ocean-ice shelf interaction ; Water masses ; Weddell Sea ; Filcher and Ronne shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., & Schroeder, M. Exceptionally warm and prolonged flow of warm deep water toward the Filchner-Ronne Ice Shelf in 2017. Geophysical Research Letters, 47(13),(2020): e2020GL088119, doi:10.1029/2020GL088119.
    Description: The Filchner‐Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open‐ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
    Description: The authors would like to express their gratitude to the officers and crews of RV Polarstern (cruises PS92 [Grant AWI_PS82_02], PS96 [Grant AWI_PS96_01], and PS111 [Grant AWI_PS111_01]), RRS Ernest Shackleton (Cruise ES060), and RSS James Clark Ross (Cruise JR16004) for their efficient assistance. E. D. received funding from the project TOBACO (267660), POLARPROG, Norges Forskningsrd.
    Keywords: Ocean-ice shelf interaction ; Weddell Sea ; Warm inflow ; Antarctic Slope Front ; Filchner-Ronne Ice Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...