GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 577.7  (1)
  • 581.7  (1)
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2021-07-26
    Description: The Atacama Desert is the driest non-polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit-sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio-weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non-polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.
    Keywords: 581.7
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-03
    Description: Numerical models are a suitable tool to quantify impacts of predicted climate change on complex ecosystems but are rarely used to study effects on benthic macroalgal communities. Fucus vesiculosus L. is a habitat-forming macroalga in the Baltic Sea and alarming shifts from the perennial Fucus community to annual filamentous algae are reported. We developed a box model able to simulate the seasonal growth of the Baltic Fucus–grazer–epiphyte system. This required the implementation of two state variables for Fucus biomass in units of carbon (C) and nitrogen (N). Model equations describe relevant physiological and ecological processes, such as storage of C and N assimilates by Fucus, shading effects of epiphytes or grazing by herbivores on both Fucus and epiphytes, but with species-specific rates and preferences. Parametrizations of the model equations and required initial conditions were based on measured parameters and process rates in the near-natural Kiel Outdoor Benthocosm (KOB) experiments during the Biological Impacts of Ocean Acidification project. To validate the model, we compared simulation results with observations in the KOB experiment that lasted from April 2013 until March 2014 under ambient and climate-change scenarios, that is, increased atmospheric temperature and partial pressure of carbon dioxide. The model reproduced the magnitude and seasonal cycles of Fucus growth and other processes in the KOBs over 1 yr under different scenarios. Now having established the Fucus model, it will be possible to better highlight the actual threat of climate change to the Fucus community in the shallow nearshore waters of the Baltic Sea.
    Keywords: 577.7 ; Baltic sea ; benthic macroalgal communities ; Fucus growth ; biotic and biotic interactions
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...