GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-21
    Description: We present dissolved and total dissolvable trace elements for spring and summer cruises in 2010 in the high‐latitude North Atlantic. Surface and full depth data are provided for Al, Cd, Co, Cu, Mn, Ni, Pb, and Zn in the Iceland and Irminger Basins, and consequences of biological uptake and inputs by the spring Eyjafjallajökull volcanic eruption are assessed. Ash from Eyjafjallajökull resulted in pronounced increases in Al, Mn, and Zn in surface waters in close proximity to Iceland during the eruption, while 3 months later during the summer cruise levels had returned to more typical values for the region. The apparent seasonal removal ratios of surface trace elements were consistent with biological export. Assessment of supply of trace elements to the surface mixed layer for the region, excluding volcanic inputs, indicated that deep winter mixing was the dominant source, with diffusive mixing being a minor source (between 13.5% [dissolved Cd, DCd] and −2.43% [DZn] of deep winter flux), and atmospheric inputs being an important source only for DAl and DZn (DAl up to 42% and DZn up to 4.2% of deep winter + diffusive fluxes) and typically less than 1% for the other elements. Elemental supply ratios to the surface mixed layer through convection were comparable to apparent removal ratios we calculated between spring and summer. Given that deep mixing dominated nutrient and trace element supply to surface waters, predicted increases in water column stratification in this region may reduce supply, with potential consequences for primary production and the biological carbon pump.
    Description: Key Points: Bio‐essential element concentrations in surface waters decreased from spring to summer with removal ratios reflecting biological uptake. Effects of volcanic inputs from Eyjafjallajökull in spring 2010 were pronounced for Al, Mn, and Zn but returned to typical levels in summer. Deep winter convection dominated trace element supply to surface waters with minor contributions from atmospheric and diffusive mixing.
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel http://dx.doi.org/10.13039/501100003153
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Keywords: 551.9
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-01
    Description: The duration and magnitude of the North Atlantic spring bloom impacts both higher trophic levels and oceanic carbon sequestration. Nutrient exhaustion offers a general explanation for bloom termination, but detail on which nutrients and their relative influence on phytoplankton productivity, community structure, and physiology is lacking. Here, we address this using nutrient addition bioassay experiments conducted across the midlatitude North Atlantic in June 2017 (late spring). In four out of six experiments, phytoplankton accumulated over 48–72 h following individual additions of either iron (Fe) or nitrogen (N). In the remaining two experiments, Fe and N were serially limiting, that is, their combined addition sequentially enhanced phytoplankton accumulation. Silicic acid (Si) added in combination with N + Fe led to further chlorophyll a (Chl a) enhancement at two sites. Conversely, addition of zinc, manganese, cobalt, vitamin B12, or phosphate in combination with N + Fe did not. At two sites, the simultaneous supply of all six nutrients, in combination with N + Fe, also led to no further Chl a enhancement, but did result in an additional 30–60% particulate carbon accumulation. This particulate carbon accumulation was not matched by a Redfield equivalent of particulate N, characteristic of high C:N organic exudates that enhance cell aggregation and sinking. Our results suggest that growth rates of larger phytoplankton were primarily limited by Fe and/or N, making the availability of these nutrients the main bottom-up factors contributing to spring bloom termination. In addition, the simultaneous availability of other nutrients could modify bloom characteristics and carbon export efficiency.
    Keywords: 577.7 ; mid-latitude North Atlantic ; phytoplankton ; diatom blooming ; experiments
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...