GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic Ocean  (2)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2021-07-05
    Description: Optically active water constituents attenuate solar radiation and hence affect the vertical distribution of energy in the upper ocean. To understand their implications, we operate an ocean biogeochemical model coupled to a general circulation model with sea ice. Incorporating the effect of phytoplankton and colored dissolved organic matter (CDOM) on light attenuation in the model increases the sea surface temperature in summer and decreases sea ice concentration in the Arctic Ocean. Locally, the sea ice season is reduced by up to one month. CDOM drives a significant part of these changes, suggesting that an increase of this material will amplify the observed Arctic surface warming through its direct thermal effect. Indirectly, changing advective processes in the Nordic Seas may further intensify this effect. Our results emphasize the phytoplankton and CDOM feedbacks on the Arctic ocean and sea ice system and underline the need to consider these effects in future modeling studies to enhance their plausibility.
    Description: Plain Language Summary: The amount of microalgae and colored dissolved organic material in the ocean determines how much light is absorbed in the surface waters and how much can reach greater depths. The vertical distribution of energy affects the upper ocean temperature and general circulation. Here, we use a numerical ocean model with biogeochemistry and sea ice, in which the individual effects of microalgae and colored dissolved organic matter can be turned on and off separately. When both effects are turned on, the summertime surface temperatures in the Arctic are larger and consequently more sea ice melts, so that the sea ice season is shorter by up to one month. We find that, to a large extent, the colored dissolved material is responsible for these changes. An increase of this material due to climate change will amplify the observed Arctic surface warming. For better projections of climate change, new models should account for the effect of these light‐absorbing water constituents.
    Description: Key Points: Colored dissolved material is responsible for a significant part of the induced surface warming and sea ice loss in the Arctic Ocean. The combined effect of optical constituents reduces the sea ice season by up to one month. Considering the properties of optical constituents and their variability will enhance the plausibility of future modeling studies.
    Description: Federal Agency for Scientific Organizations (FASO) Russia http://dx.doi.org/10.13039/501100013176
    Description: German Research Foundation (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Climate Initiative (REKLIM)
    Keywords: 551,9 ; phytoplankton ; CDOM ; Arctic Ocean ; colored dissolved organic matter ; radiative effect ; light attenuation
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6373-6391, doi:10.1029/2018JC013814.
    Description: We quantify Atlantic Water heat loss north of Svalbard using year‐long hydrographic and current records from three moorings deployed across the Svalbard Branch of the Atlantic Water boundary current in 2012–2013. The boundary current loses annually on average 16 W m−2 during the eastward propagation along the upper continental slope. The largest vertical fluxes of 〉100 W m−2 occur episodically in autumn and early winter. Episodes of sea ice imported from the north in November 2012 and February 2013 coincided with large ocean‐to‐ice heat fluxes, which effectively melted the ice and sustained open water conditions in the middle of the Arctic winter. Between March and early July 2013, a persistent ice cover‐modulated air‐sea fluxes. Melting sea ice at the start of the winter initiates a cold, up to 100‐m‐deep halocline separating the ice cover from the warm Atlantic Water. Semidiurnal tides dominate the energy over the upper part of the slope. The vertical tidal structure depends on stratification and varies seasonally, with the potential to contribute to vertical fluxes with shear‐driven mixing. Further processes impacting the heat budget include lateral heat loss due to mesoscale eddies, and modest and negligible contributions of Ekman pumping and shelf break upwelling, respectively. The continental slope north of Svalbard is a key example regarding the role of ocean heat for the sea ice cover. Our study underlines the complexity of the ocean's heat budget that is sensitive to the balance between oceanic heat advection, vertical fluxes, air‐sea interaction, and the sea ice cover.
    Description: Arctic Ocean program at the FRAM-High North Research Centre for Climate and the environment; National Science Foundation (NSF) Grant Number: ARC-1264098; Polish-Norwegian Research Programme Grant Number: POL-NOR/202006/10/2013; Research Council of Norway Grant Number: 276730; Steven Grossman Family Foundation
    Keywords: Atlantic Water ; Arctic Ocean ; Heat flux ; Nansen Basin ; Boundary current ; A‐TWAIN
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...