GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2,4-dichlorophenoxyacetic acid (2,4-D)  (1)
  • Nitrogen fixation  (1)
  • Somaclonal variation  (1)
Document type
Keywords
Publisher
Years
  • 1
    ISSN: 1573-5028
    Keywords: 2,4-dichlorophenoxyacetic acid (2,4-D) ; detoxification ; herbicide resistance ; transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plants resistant to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were produced through the genetic engineering of a novel detoxification pathway into the cells of a species normally sensitive to 2,4-D. We cloned the gene for 2,4-D monooxygenase, the first enzyme in the plasmid-encoded 2,4-D degradative pathway of the bacterium Alcaligenes eutrophus, into a cauliflower mosaic virus 35S promoter expression vector and introduced it into tobacco plants by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing the highest levels of the monooxygenase enzyme exhibited increased tolerance to 2,4-D in leaf disc and seed germination assays, and young plants survived spraying with levels of herbicide up to eight times the usual field application rate. The introduction of the gene for 2,4-D monooxygenase into broad-leaved crop plants, such as cotton, should eventually allow 2,4-D to be used as an inexpensive post-emergence herbicide on economically important dicot crops.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Haemoglobin ; Nitrogen fixation ; Gene expression ; Plant transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant haemoglobin genes are known to occur in legume and non-legume families and in both nodulating (e.g. Parasponia andersonii) and non-nodulating species (e.g. Trema tomentosa). Their presence in non-nodulating plants raises the possibility that haemoglobins might serve a function in non-symbiotic tissues distinct from their role in the nitrogen-fixing root nodules induced by micro-organisms. We report here that a P. andersonii haemoglobin promoter can regulate expression of either the P. andersonii haemoglobin gene, or a hybrid construct with the bacterial chloramphenicol acetyltransferase gene (cat), in the nonsymbiotic plant, Nicotiana tabacum. Expression is predominantly in the roots, implying that haemoglobins might have a function in roots of non-nodulated plants. We have also observed a low level of haemoglobin protein in non-nodulated P. andersonii roots, but not leaves, supporting this assertion. The expression in transgenic plants will allow further characterization of the promoter sequences essential for the organ-specific expression of haemoglobins in nonsymbiotic tissues.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 202 (1986), S. 235-239 
    ISSN: 1617-4623
    Keywords: Maize ; Alcohol dehydrogenase ; Somaclonal variation ; Mutation ; Gene sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plants regenerated from tissue cultures of maize were screened for variants of ADH1 and ADH2. Root extracts of 645 primary regenerant plants were tested, and one stable mutant of Adh1 was detected. The mutant gene (Adh1-Usv) produces a functional enzyme with a slower electrophoretic mobility than that of the progenitor Adh1-S allele, and is stably transmitted to progeny. The mutant was not present among four other plants derived from the same immature embryo, and therefore arose as a consequence of the culture procedure. The gene of Adh1-Usv was cloned and sequenced. A single base change in exon 6 was the only alteration found in the gene sequence. This would translate in the polypeptide sequence to a valine residue substituting for a glutamic acid residue, resulting in the loss of a negative charge and the production of a protein with slower electrophoretic mobility.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...