GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMOC  (3)
  • 162-980; COMPCORE; Composite Core; Joides Resolution; Leg162; Ocean Drilling Program; ODP; South Atlantic Ocean  (2)
  • 306-U1313; AGE; COMPCORE; Composite Core; Counting 〉315 µm fraction; Depth, composite revised; DEPTH, sediment/rock; Dry mass; DSDP/ODP/IODP sample designation; Exp306; Ice rafted debris; Integrated Ocean Drilling Program / International Ocean Discovery Program; Intercore correlation; IODP; Joides Resolution; North Atlantic Climate 2; Sample code/label; Weighted  (2)
Document type
Keywords
  • 1
    Publication Date: 2022-08-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.
    Description: Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.
    Description: This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS).
    Keywords: AMOC ; seawater cadmium ; Florida Straits ; Holocene ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 1036–1053, doi:10.1002/2017PA003092.
    Description: Antarctic Intermediate Water (AAIW) plays important roles in the global climate system and the global ocean nutrient and carbon cycles. However, it is unclear how AAIW responds to global climate changes. In particular, neodymium isotopic composition (εNd) reconstructions from different locations from the tropical Atlantic have led to a debate on the relationship between northward penetration of AAIW into the tropical Atlantic and the Atlantic meridional overturning circulation (AMOC) variability during the last deglaciation. We resolve this controversy by studying the transient oceanic evolution during the last deglaciation using a neodymium-enabled ocean model. Our results suggest a coherent response of AAIW and AMOC: when AMOC weakens, the northward penetration and transport of AAIW decrease while its depth and thickness increase. Our study highlights that as part of the return flow of the North Atlantic Deep Water, the northward penetration of AAIW in the Atlantic is determined predominately by AMOC intensity. Moreover, the inconsistency among different tropical Atlantic εNd reconstructions is reconciled by considering their corresponding core locations and depths, which were influenced by different water masses in the past. The very radiogenic water from the bottom of the Gulf of Mexico and the Caribbean Sea, which was previously overlooked in the interpretations of deglacial εNd variability, can be transported to shallow layers during active AMOC and modulates εNd in the tropical Atlantic. Changes in the AAIW core depth must also be considered. Thus, interpretation of εNd reconstructions from the tropical Atlantic is more complicated than suggested in previous studies.
    Description: NSF P2C2. Grant Numbers: NSF1401778, NSF1401802 DOE Grant Number: DE-SC0006744; NSFC Grant Numbers: 41630527, 41130105; Swiss National Science Foundation; WHOI Investing in Science Program; U.S. DOE the RGCM program; LDRD
    Description: 2018-04-24
    Keywords: AAIW ; AMOC ; Deglacial ; Neodymium isotope ; Paleocirculation tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., & Wu, L. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 541, (2020): 11629, doi:10.1016/j.epsl.2020.116294.
    Description: Reconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
    Description: We thank two anonymous reviewers for their useful and constructive comments. We also thank Editor Dr Laura F. Robinson for handling the manuscript. This work is supported by National Science Foundation of China No. 41630527, US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432). We would like to acknowledge the high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao). Data used to produce the results in this study can be obtained from HPSS at CISL: /home/sgu28/CTRACE_decadal or by contacting the authors.
    Keywords: Last Glacial Maximum ; AMOC ; Water mass ; Multi-proxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-02
    Keywords: 306-U1313; AGE; COMPCORE; Composite Core; Counting 〉315 µm fraction; Depth, composite revised; DEPTH, sediment/rock; Dry mass; DSDP/ODP/IODP sample designation; Exp306; Ice rafted debris; Integrated Ocean Drilling Program / International Ocean Discovery Program; Intercore correlation; IODP; Joides Resolution; North Atlantic Climate 2; Sample code/label; Weighted
    Type: Dataset
    Format: text/tab-separated-values, 3220 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Flower, Benjamin P; Oppo, Delia W; McManus, Jerry F; Venz, Kathryn A; Hodell, David A; Cullen, James L (2000): North Atlantic intermediate to deep water circulation and chemical stratification during the past 1 Myr. Paleoceanography, 15(4), 388-403, https://doi.org/10.1029/1999PA000430
    Publication Date: 2024-03-02
    Description: Benthic foraminiferal carbon isotope records from a suite of drill sites in the North Atlantic are used to trace variations in the relative strengths of Lower North Atlantic Deep Water (LNADW), Upper North Atlantic Deep Water (UNADW), and Southern Ocean Water (SOW) over the past 1 Myr. During glacial intervals, significant increases in intermediate-to-deep delta13C gradients (commonly reaching 〉1.2 per mil ) are consistent with changes in deep water circulation and associated chemical stratification. Bathymetric delta13C gradients covary with benthic foraminiferal delta18O and covary inversely with Vostok CO2, in agreement with chemical stratification as a driver of atmospheric CO2 changes. Three deep circulation indices based on delta13C show a phasing similar to North Atlantic sea surface temperatures, consistent with a Northern Hemisphere control of NADW/SOW variations. However, lags in the precession band indicate that factors other than deep water circulation control ice volume variations at least in this band.
    Keywords: 162-980; COMPCORE; Composite Core; Joides Resolution; Leg162; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oppo, Delia W; McManus, Jerry F; Cullen, James L (2006): Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic. Quaternary Science Reviews, 25(23-24), 3268-3277, https://doi.org/10.1016/j.quascirev.2006.07.006
    Publication Date: 2024-03-02
    Description: Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted ~10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2-3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1-2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1-2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.
    Keywords: 162-980; COMPCORE; Composite Core; Joides Resolution; Leg162; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-02
    Keywords: 306-U1313; AGE; COMPCORE; Composite Core; Counting 〉315 µm fraction; Depth, composite revised; DEPTH, sediment/rock; Dry mass; DSDP/ODP/IODP sample designation; Exp306; Ice rafted debris; Integrated Ocean Drilling Program / International Ocean Discovery Program; Intercore correlation; IODP; Joides Resolution; North Atlantic Climate 2; Sample code/label; Weighted
    Type: Dataset
    Format: text/tab-separated-values, 3220 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...