GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sediment resuspension  (2)
  • 14C and 13C composition  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 105 (2013): 14-30, doi:10.1016/j.gca.2012.11.034.
    Description: Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source apportionment, and for interpretation of sedimentary records of past vegetation dynamics. Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington margin, marine carbon cycling, terrestrial organic matter
    Description: Grants OCE-9907129, OCE-0137005, and OCE-0526268 (to TIE) from the National Science Foundation (NSF) supported this research.
    Keywords: 14C and 13C composition ; Radiocarbon age ; Plant wax lipids ; Lignin phenols ; Washington margin ; Marine carbon cycling ; Terrestrial organic matter
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4539–4553, doi:10.1002/2016JC012549.
    Description: Biogenic matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (∼50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ∼ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.
    Description: NSF Ocean Sciences Chemical Oceanography program Grant Numbers: OCE-0425677, OCE-0851350; Ocean and Climate Change Institute of WHOI
    Description: 2017-12-01
    Keywords: Sinking particle flux ; Biological carbon pump ; Radiocarbon ; Lateral particle supply ; Sediment resuspension ; Northwest Atlantic ; Sediment trap
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 24 (2010): GB4016, doi:10.1029/2010GB003802.
    Description: Particulate organic carbon (POC) in the ocean often exhibits more depleted radiocarbon contents (lower Δ 14C values) than expected if its sole source were POC recently synthesized by primary production and export from the overlying surface waters. An examination of available Δ14C data sets for sinking POC show that this phenomenon is both common and globally widespread. Also, a strong correlation is found to exist between Δ14C values of organic carbon and aluminum content in sinking particles that is consistent over a range of oceanic settings. Together, these findings imply that aged organic carbon associated with lithogenic material from sediment resuspension is responsible for the observed low Δ 14C values as opposed to other processes such as incorporation of dissolved inorganic carbon or dissolved organic carbon into POC at depth. An estimate based on POC flux-weighted Δ14C values shows that about 35% of sinking POC at the locations studied is derived from resuspended sediment. Our results suggest that resuspension of sediment and its subsequent lateral transport is an important component of the oceanic carbon cycle and should be considered in models of oceanic carbon export and burial.
    Description: This research was funded by the NSF Ocean Sciences Division (Chemical Oceanography program) and by the Ocean and Climate Change Institute and Arctic Research Initiative at the Woods Hole Oceanographic Institution.
    Keywords: Particulate organic carbon ; Sediment resuspension ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...