GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; MARUM  (6)
  • 113-690B; 113-693B; ANT-V/4; ANT-VI/3; AWI_Paleo; DRILL; Drilling/drill rig; Gravity corer (Kiel type); Joides Resolution; Kapp Norvegia; Leg113; Ocean Drilling Program; ODP; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS10; PS10/694; PS12; PS12/302; PS1481-3; PS1591-1; SL; South Atlantic Ocean; Weddell Sea  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wenau, Stefan; Spieß, Volkhard; Pape, Thomas; Fekete, Noemi (2017): Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin. Marine and Petroleum Geology, 83, 140-157, https://doi.org/10.1016/j.marpetgeo.2017.02.030
    Publication Date: 2023-03-03
    Description: Effective seal breaching is a major contributor to methane seepage from deep sea sediments as it ensures the migration of gas and liquid hydrocarbons from buried reservoirs to the seafloor. This study shows two giant pockmarks on the lower slope of the Lower Congo Basin associated with salt-tectonic faulting and the buried Pliocene Congo deep sea fan. The progressive burial of Pliocene fan deposits results in mobilization of methane from gas hydrates at the Base of the Gas Hydrate Stability Zone which migrates through the hemipelagic seal towards the seafloor along salt-induced faults. Seal-breaching in this part of the Lower Congo Basin relies solely on salt-tectonic faulting contrasting with upslope seafloor seepage settings where polygonal faulting within the hemipelagic seal occurs. Dedicated 2D and 3D seismic and acoustic surveying allows the detailed reconstruction of the evolution of pockmarks which appear to have been active for the last 640 kyr. We also show indications that the modern seafloor depression formed due to reduced sedimentation in the vicinity of active seepage. The presented seafloor seepage features illustrate the mode of gas release from the Pliocene fan in the Lower Congo Basin, which contrasts with previously investigated seepage environments further upslope.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wenau, Stefan; Spieß, Volkhard (2018): Active Seafloor Seepage Along Hydraulic Fractures Connected to Lateral Stress From Salt-Related Rafting: Regab Pockmark, Congo Fan. Active seafloor seepage along hydraulic fractures connected to lateral stress from salt-related rafting - Regab Pockmark, Congo Fan, Journal of Geophysical Research: Solid Earth, 123(5), 3301-3319, https://doi.org/10.1002/2017JB015006
    Publication Date: 2023-03-03
    Description: Seafloor seepage is a widespread phenomenon within salt‐influenced basins as the deformation provides pathways for hydrocarbons to reach the seafloor. However, only minor attention has been given to the distal parts of such systems where the impact of salt‐tectonic deformation is relatively unpronounced. The stress put on the sedimentary column by moving salt on a continental margin may influence fluid flow systems even outside of the salt province. This stress may lead to overpressure formation within reservoirs and determine the orientation of overpressure‐induced fractures. Seepage in the Congo Fan has been discovered in such a distal position at the Regab pockmark, about 35 km west of the salt front and its geology and biology have been studied extensively in recent years. We present high‐resolution multichannel seismic data from the Regab pockmark that reveal the underlying migration pathways from a buried channel flank 300 mbsf to the seafloor via hydraulic fractures in the sealing overburden. Local doming of the reservoir and the remobilization and uplift of sedimentary strata along the migration pathways are interpreted as the result of overpressure within the reservoir. The orientation of the hydraulic fractures is WSW‐ENE and the fracture outline corresponds to the area of most intense seepage activity within the seafloor pockmark. Along with a similar orientation of other fractures in the vicinity, we propose that this alignment is due to the stress imposed on the sedimentary column in the fan by the seaward moving salt and rafting sedimentary packages of the salt province further east.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, David; Mogollón, José M; Strasser, Michael; Pape, Thomas; Bohrmann, Gerhard; Fekete, Noemi; Spieß, Volkhard; Kasten, Sabine (2013): Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 6(8), 647-651, https://doi.org/10.1038/ngeo1886
    Publication Date: 2023-03-03
    Description: Methane, a potent greenhouse gas, is abundant in marine sediments**1, 2. Submarine seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and mechanisms that can trigger episodic seep events are poorly understood**2, 3, 4. For example, critical gas pressures have been predicted to develop beneath impermeable sediments that bear gas hydrates, making them susceptible to mechanical failure and gas release**5, 6. Gas hydrates often occur in seismically active regions, but the role of earthquakes as triggers of hydrocarbon seepage through gas-hydrate-bearing sediments has been only superficially addressed**7, 8. Here we present geochemical analyses of sediment cores retrieved from the convergent margin off Pakistan. We find that a substantial increase in the upward flux of gas occurred within a few decades of a Mw 8.1 earthquake in 1945-the strongest earthquake reported for the Arabian Sea. Our seismic reflection data suggest that co-seismic shaking fractured gas-hydrate-bearing sediments, creating pathways for the free gas to migrate from a shallow reservoir within the gas hydrate stability zone into the water column. We conservatively estimate that 3.26×10**8 mol of methane have been discharged from the seep site since the earthquake. We therefore suggest that hydrocarbon seepage triggered by earthquakes needs to be considered in local and global carbon budgets at active continental margins.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kasten, Sabine; Nöthen, Kerstin; Hensen, Christian; Spieß, Volkhard; Blumenberg, Martin; Schneider, Ralph R (2012): Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan. Geo-Marine Letters, 32, 515-524, https://doi.org/10.1007/s00367-012-0288-9
    Publication Date: 2023-05-12
    Description: The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wenau, Stefan; Spieß, Volkhard; Pape, Thomas; Fekete, Noemi (2015): Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage. Marine and Petroleum Geology, 67, 880-893, https://doi.org/10.1016/j.marpetgeo.2014.09.021
    Publication Date: 2023-05-12
    Description: This study investigates the distribution and evolution of seafloor seepage in the vicinity of the salt front, i.e., the seaward boundary of salt-induced deformation in the Lower Congo Basin (LCB). Seafloor topography, backscatter data and TV-sled observations indicate active fluid seepage from the seafloor directly at the salt front, whereas suspected seepage sites appear to be inactive at a distance of 〉10 km landward of the deformation front. High resolution multichannel seismic data give detailed information on the structural development of the area and its influence on the activity of individual seeps during the geologic evolution of the salt front region. The unimpeded migration of gas from fan deposits along sedimentary strata towards the base of the gas hydrate stability zone within topographic ridges associated with relatively young salt-tectonic deformation facilitates seafloor seepage at the salt front. Bright and flat spots within sedimentary successions suggest geological trapping of gas on the flanks of mature salt structures in the eastern part of the study area. Onlap structures associated with fan deposits which were formed after the onset of salt-tectonic deformation represent potential traps for gas, which may hinder gas migration towards seafloor seeps. Faults related to the thrusting of salt bodies seawards also disrupt along-strata gas migration pathways. Additionally, the development of an effective gas hydrate seal after the cessation of active salt-induced uplift and the near-surface location of salt bodies may hamper or prohibit seafloor seepage in areas of advanced salt-tectonic deformation. This process of seaward shifting active seafloor seepage may propagate as seaward migrating deformation affects Congo Fan deposits on the abyssal plain. These observations of the influence of the geologic evolution of the salt front area on seafloor seepage allows for a characterization of the large variety of hydrocarbon seepage activity throughout this compressional tectonic setting.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Römer, Miriam; Sahling, Heiko; Pape, Thomas; Spieß, Volkhard; Bohrmann, Gerhard (2012): Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research: Oceans, 117, C10015, https://doi.org/10.1029/2011JC007424
    Publication Date: 2023-12-04
    Description: Evidence for twelve sites with gas bubble emissions causing hydroacoustic anomalies in 18 kHz echosounder records ('flares') was obtained at the convergent Makran continental margin. The hydroacoustic anomalies originating from hydrocarbon seeps at water depths between 575 and 2870 m disappeared after rising up to 2000 m in the water column. Dives with the remotely operated vehicle 'Quest 4000 m' revealed that several individual bubble vents contributed to one hydroacoustic anomaly. Analyzed gas samples suggest that bubbles were mainly composed of methane of microbial origin. Bubble size distributions and rise velocities were determined and the volume flux was estimated by counting the emitted bubbles and using their average volume. We found that a low volume flux (Flare 1 at 575 mbsl: 90 ml/min) caused a weak hydroacoustic signal in echograms whereas high volume fluxes (Flare 2 at 1027 mbsl: 1590 ml/min; Flare 5 C at 2870 mbsl: 760 ml/min) caused strong anomalies. The total methane bubble flux in the study area was estimated by multiplying the average methane flux causing a strong hydroacoustic anomaly in the echosounder record with the total number of equivalent anomalies. An order-of-magnitude estimate further considers the temporal variability of some of the flares, assuming a constant flux over time, and allows a large range of uncertainty inherent to the method. Our results on the fate of bubbles and the order-of-magnitude estimate suggest that all of the ?40 ± 32 ? 106 mol methane emitted per year within the gas hydrate stability zone remain in the deep ocean.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Grobe, Hannes; Fütterer, Dieter K; Spieß, Volkhard (1990): Oligocene to Quaternary sedimentation processes on the Antarctic continental margin, ODP Leg 113, Site 693. In: Barker, PF; Kennett, JP; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 113, 121-131, https://doi.org/10.2973/odp.proc.sr.113.193.1990
    Publication Date: 2024-01-09
    Description: Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
    Keywords: 113-690B; 113-693B; ANT-V/4; ANT-VI/3; AWI_Paleo; DRILL; Drilling/drill rig; Gravity corer (Kiel type); Joides Resolution; Kapp Norvegia; Leg113; Ocean Drilling Program; ODP; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS10; PS10/694; PS12; PS12/302; PS1481-3; PS1591-1; SL; South Atlantic Ocean; Weddell Sea
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...