GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; MARUM  (3)
  • 067-2; AMADEUS; Amazon Submarine Delta; Center for Marine Environmental Sciences; DEPTH, sediment/rock; GeoB16212-2; Globigerinoides ruber white, δ18O; Globigerinoides sacculifer, δ18O; Maria S. Merian; MARUM; Mass spectrometer Finnigan MAT 251; MSM20/3; MUC; MultiCorer  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Crivellari, Stefano; Chiessi, Cristiano Mazur; Kuhnert, Henning; Häggi, Christoph; Portilho-Ramos, Rodrigo Costa; Zeng, Jing-Ying; Zhang, Yancheng; Schefuß, Enno; Mollenhauer, Gesine; Hefter, Jens; Alexandre, Felipe; Mulitza, Stefan; Sampaio, Gilvan (2018): Increased Amazon freshwater discharge during late Heinrich Stadial 1. Quaternary Science Reviews, 181, 144-155, https://doi.org/10.1016/j.quascirev.2017.12.005
    Publication Date: 2023-03-03
    Description: The temporal succession of changes in Amazonian hydroclimate during Heinrich Stadial 1 (HS1) (ca. 18-14.7 cal ka BP) is currently poorly resolved. Here we present HS1 records based on isotope, inorganic and organic geochemistry from a marine sediment core influenced by the Amazon River discharge. Our records offer a detailed reconstruction of the changes in Amazonian hydroclimate during HS1, integrated over the basin. We reconstructed surface water hydrography using stable oxygen isotopes (d18O) and Mg/Ca-derived paleotemperatures from the planktonic foraminifera Globigerinoides ruber, as well as salinity changes based on stable hydrogen isotope (dD) of palmitic acid. We also analyzed branched and isoprenoid tetraether concentrations, and compared them to existing bulk sediment ln(Fe/Ca) data and vegetation reconstruction based on stable carbon isotopes from n-alkanes, in order to understand the relationship between continental precipitation, vegetation and sediment production. Our results indicate a two-phased HS1 (HS1a and HS1b). During HS1a (18-16.9 cal ka BP), a first sudden increase of sea surface temperatures (SST) in the western equatorial Atlantic correlated with the slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and the associated southern hemisphere warming phase of the bipolar seesaw. This phase was also characterized by an increased delivery of terrestrial material. During HS1b (16.9-14.8 cal ka BP), a decrease in terrestrial input was, however, associated with a marked decline of seawater d18O and palmitic acid dD. Both isotopic proxies independently indicate a drop in sea surface salinity (SSS). A number of records under the influence of the North Brazil Current, in contrast, indicate increases in SST and SSS resulting from a weakened AMOC during HS1. Our records thus suggest that the expected increase in SSS due to the AMOC slowdown was overridden by a two-phased positive precipitation anomaly in Amazonian hydroclimate.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Gerhard; Karstensen, Johannes; Romero, Oscar E; Baumann, Karl-Heinz; Donner, Barbara; Hefter, Jens; Mollenhauer, Gesine; Iversen, Morten Hvitfeldt; Fiedler, Björn; Monteiro, Ivanice; Körtzinger, Arne (2016): Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation. Biogeosciences, 13(11), 3203-3223, https://doi.org/10.5194/bg-13-3203-2016
    Publication Date: 2023-06-26
    Description: Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg**-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m**-2 d**-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ~15 and 13.3 mg m**-2 d**-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The d15N record showed a decrease from 5.21 to 3.11 per mil from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from -52 to 21.4 mg m**-2 d**-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano Mazur; Sawakuchi, André Oliveira; Zabel, Matthias; Baker, Paul A; Hefter, Jens; Mollenhauer, Gesine (2017): Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf and fan sediments. Biogeosciences, 14, 2495-2512, https://doi.org/10.5194/bg-14-2495-2017
    Publication Date: 2024-02-10
    Description: The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (d13CTOC) and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al/Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted d13CTOC values (-26.1 per mil to -29.9 per mil) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S/V) and cinnamyl to vanillyl (C/V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In marine sediments, the distribution of d13CTOC and Lambda8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon Fan, low lignin content, relatively depleted d13CTOC values and high (Ad/Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr is derived from petrogenic (sourced from ancient rocks) sources.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-02
    Keywords: 067-2; AMADEUS; Amazon Submarine Delta; Center for Marine Environmental Sciences; DEPTH, sediment/rock; GeoB16212-2; Globigerinoides ruber white, δ18O; Globigerinoides sacculifer, δ18O; Maria S. Merian; MARUM; Mass spectrometer Finnigan MAT 251; MSM20/3; MUC; MultiCorer
    Type: Dataset
    Format: text/tab-separated-values, 33 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...